书目名称Approximation of Functions of Several Variables and Imbedding Theorems影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0160445<br><br> <br><br>书目名称Approximation of Functions of Several Variables and Imbedding Theorems影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0160445<br><br> <br><br>书目名称Approximation of Functions of Several Variables and Imbedding Theorems网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0160445<br><br> <br><br>书目名称Approximation of Functions of Several Variables and Imbedding Theorems网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0160445<br><br> <br><br>书目名称Approximation of Functions of Several Variables and Imbedding Theorems被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0160445<br><br> <br><br>书目名称Approximation of Functions of Several Variables and Imbedding Theorems被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0160445<br><br> <br><br>书目名称Approximation of Functions of Several Variables and Imbedding Theorems年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0160445<br><br> <br><br>书目名称Approximation of Functions of Several Variables and Imbedding Theorems年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0160445<br><br> <br><br>书目名称Approximation of Functions of Several Variables and Imbedding Theorems读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0160445<br><br> <br><br>书目名称Approximation of Functions of Several Variables and Imbedding Theorems读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0160445<br><br> <br><br>
http://reply.papertrans.cn/17/1605/160445/160445_2.png
http://reply.papertrans.cn/17/1605/160445/160445_3.png
http://reply.papertrans.cn/17/1605/160445/160445_4.png
https://doi.org/10.1007/978-3-662-42618-0The function $$T_n(z) = {alpha_0over 2} + {mathopSigmalimits_{k=1}^n} (alpha_k {
m cos} kz+eta_k {
m sin} kz),$$ where α., β. (. = 0, 1, …, .) are arbitrary complex numbers, and . is a complex or real variable, is said to be a . .. This definition does not exclude the case α. = β. = 0.
http://reply.papertrans.cn/17/1605/160445/160445_6.png
In-vitro-Merkmale von Polioviren,We shall denote the Liouville classes by .(ℝ.) (. ≧ 0, ., . = .(ℝ.)) in the isotropic case and by .(ℝ.) in the anisotropic case.
Preparatory Information,In this book we shall consider functions depending, generally speaking, on several variables.
http://reply.papertrans.cn/17/1605/160445/160445_9.png
http://reply.papertrans.cn/17/1605/160445/160445_10.png