deceive 发表于 2025-3-23 11:41:46
The Liouville Classes , ,We shall denote the Liouville classes by .(ℝ.) (. ≧ 0, ., . = .(ℝ.)) in the isotropic case and by .(ℝ.) in the anisotropic case.修剪过的树篱 发表于 2025-3-23 15:57:24
http://reply.papertrans.cn/17/1605/160445/160445_12.pnggranite 发表于 2025-3-23 21:05:51
http://reply.papertrans.cn/17/1605/160445/160445_13.png急性 发表于 2025-3-24 00:40:22
http://reply.papertrans.cn/17/1605/160445/160445_14.pngOrgasm 发表于 2025-3-24 06:17:47
http://reply.papertrans.cn/17/1605/160445/160445_15.pngrefraction 发表于 2025-3-24 08:25:43
https://doi.org/10.1007/978-3-662-42624-1)$ and numbers .′, .″, satisfying the inequalities (2) $$p_l{mathop<limits_=}{p^prime}<p^{primeprime}{mathop<limits_=} infty.$$ If the following conditions are satisfied : (3) $$varrho_i^prime = {r_ichiover chi_i},$$ (4) $$chi=1-{mathopsumlimits_{l=1}^n}{{1over p_l}-{1over p^prime}over r_l故意 发表于 2025-3-24 13:47:19
https://doi.org/10.1007/978-3-662-38353-7ell-known formula. $$matrix{overline{(1+mid xmid^2)^{-r/2}}={1over (2pi)^{n/2}}int {e^{iuxi}dxiover (1+mid xi mid^2)^{r/2}}cr ={1over{mid umid^{{n-r}over 2}}}{mathopintlimits_0^infty}{varrho^{n/2}over (1+varrho^2)^{r/2}}I_{{n-2}over 2}(mid umidvarrho)dvarrho,}$$ where . is the Bessel Function of ordAlveolar-Bone 发表于 2025-3-24 16:43:27
Approximation of Functions of Several Variables and Imbedding Theorems978-3-642-65711-5Series ISSN 0072-7830 Series E-ISSN 2196-9701ABOUT 发表于 2025-3-24 19:08:21
0072-7830 Overview: 978-3-642-65713-9978-3-642-65711-5Series ISSN 0072-7830 Series E-ISSN 2196-9701打谷工具 发表于 2025-3-25 02:14:02
http://reply.papertrans.cn/17/1605/160445/160445_20.png