deceive 发表于 2025-3-23 11:41:46

The Liouville Classes , ,We shall denote the Liouville classes by .(ℝ.) (. ≧ 0, ., . = .(ℝ.)) in the isotropic case and by .(ℝ.) in the anisotropic case.

修剪过的树篱 发表于 2025-3-23 15:57:24

http://reply.papertrans.cn/17/1605/160445/160445_12.png

granite 发表于 2025-3-23 21:05:51

http://reply.papertrans.cn/17/1605/160445/160445_13.png

急性 发表于 2025-3-24 00:40:22

http://reply.papertrans.cn/17/1605/160445/160445_14.png

Orgasm 发表于 2025-3-24 06:17:47

http://reply.papertrans.cn/17/1605/160445/160445_15.png

refraction 发表于 2025-3-24 08:25:43

https://doi.org/10.1007/978-3-662-42624-1)$ and numbers .′, .″, satisfying the inequalities (2) $$p_l{mathop<limits_=}{p^prime}<p^{primeprime}{mathop<limits_=} infty.$$ If the following conditions are satisfied : (3) $$varrho_i^prime = {r_ichiover chi_i},$$ (4) $$chi=1-{mathopsumlimits_{l=1}^n}{{1over p_l}-{1over p^prime}over r_l

故意 发表于 2025-3-24 13:47:19

https://doi.org/10.1007/978-3-662-38353-7ell-known formula. $$matrix{overline{(1+mid xmid^2)^{-r/2}}={1over (2pi)^{n/2}}int {e^{iuxi}dxiover (1+mid xi mid^2)^{r/2}}cr ={1over{mid umid^{{n-r}over 2}}}{mathopintlimits_0^infty}{varrho^{n/2}over (1+varrho^2)^{r/2}}I_{{n-2}over 2}(mid umidvarrho)dvarrho,}$$ where . is the Bessel Function of ord

Alveolar-Bone 发表于 2025-3-24 16:43:27

Approximation of Functions of Several Variables and Imbedding Theorems978-3-642-65711-5Series ISSN 0072-7830 Series E-ISSN 2196-9701

ABOUT 发表于 2025-3-24 19:08:21

0072-7830 Overview: 978-3-642-65713-9978-3-642-65711-5Series ISSN 0072-7830 Series E-ISSN 2196-9701

打谷工具 发表于 2025-3-25 02:14:02

http://reply.papertrans.cn/17/1605/160445/160445_20.png
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Approximation of Functions of Several Variables and Imbedding Theorems; Sergei Mihailovic Nikol’skii Book 1975 Springer-Verlag • Berlin •