http://reply.papertrans.cn/17/1605/160445/160445_21.png
The Function Classes ,, ,, , measurable function ƒ(.) = ƒ(., .). For fixed . it is a function of ., defined on the corresponding open one-dimensional set. If ƒ is absolutely continuous on any closed finite segment belonging to this set, then we will say that it is for the indicated . relative to ..
http://reply.papertrans.cn/17/1605/160445/160445_23.png
Approximation of Functions of Several Variables and Imbedding Theorems
http://reply.papertrans.cn/17/1605/160445/160445_25.png
http://reply.papertrans.cn/17/1605/160445/160445_26.png
http://reply.papertrans.cn/17/1605/160445/160445_27.png
Imbedding Theorems for Different Metrics and Dimensions,n .. As applied to the space ℝ. and to its coordinate subspace ℝ.(1 ≦ . ≦), this theorem reads:. ƒ ∈ .ℝ.) and (1) $$0{mathop<limits_=} varrho = l - {nover p}+{mover p^prime},1 {mathop<limits_=} p.<p^prime <infty,$$ P ? . (2) $$W_p^l({
m R}_n)
ightarrow W_{p^prime}^{lbrack varrho
brack}({
m R}
Transitivity and Unimprovability of Imbedding Theorems. Compactness,)$ and numbers .′, .″, satisfying the inequalities (2) $$p_l{mathop<limits_=}{p^prime}<p^{primeprime}{mathop<limits_=} infty.$$ If the following conditions are satisfied : (3) $$varrho_i^prime = {r_ichiover chi_i},$$ (4) $$chi=1-{mathopsumlimits_{l=1}^n}{{1over p_l}-{1over p^prime}over r_l
http://reply.papertrans.cn/17/1605/160445/160445_30.png