gratuity 发表于 2025-3-21 16:25:51
书目名称Analysis on h-Harmonics and Dunkl Transforms影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0156479<br><br> <br><br>铁砧 发表于 2025-3-21 22:21:18
2297-0304 sis side of both h-harmonics and Dunkl transforms.Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.978-3-0348-0886-6978-3-0348-0887-3Series ISSN 2297-0304 Series E-ISSN 2297-0312材料等 发表于 2025-3-22 01:13:53
http://reply.papertrans.cn/16/1565/156479/156479_3.png暂停,间歇 发表于 2025-3-22 07:36:08
http://reply.papertrans.cn/16/1565/156479/156479_4.png散布 发表于 2025-3-22 12:05:54
https://doi.org/10.1007/3-7643-7674-0ernel of the spherical .-harmonics. This expression is an analog of the zonal harmonics, which suggests a definition of a convolution operator, defined in Section 3.3 and it helps us to study various summability methods for spherical .-harmonic expansions.Dysarthria 发表于 2025-3-22 15:03:12
Dunkl Operators Associated with Reflection Groups,mily of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertwining operator between the Dunkl operators and ordinary derivatives is discussed in Section 2.3.Simulate 发表于 2025-3-22 17:31:18
http://reply.papertrans.cn/16/1565/156479/156479_7.png防水 发表于 2025-3-23 00:40:52
https://doi.org/10.1007/3-7643-7674-0he classical spherical harmonics and the Fourier transform, in which the underlying rotation group is replaced by a finite reflection group. This chapter serves as an introduction, in which we briefly recall classical results on the spherical harmonics and the Fourier transform. Since all results ar轻浮女 发表于 2025-3-23 02:37:55
https://doi.org/10.1007/3-7643-7674-0ghted spaces, we start with the definition of a family of weight functions invariant under a reflection group in Section 2.1. Dunkl operators are a family of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertw一条卷发 发表于 2025-3-23 05:42:03
http://reply.papertrans.cn/16/1565/156479/156479_10.png