SMART 发表于 2025-3-25 03:22:50

,Littlewood–Paley Theory and the Multiplier Theorem,The main result of this chapter is a Marcinkiewitcz multiplier theorem for .-harmonic expansions. Its proof uses general Littlewood–Paley theory for a symmetric diffusion semi-group. Several Littlewood–Paley type .-functions are introduced and studied via the Cesàro means for .-harmonic expansions.

粘土 发表于 2025-3-25 08:19:03

Feng Dai,Yuan Xu,Sergey TikhonovFocusses on the analysis side of h-harmonics and Dunkl transforms.Written in a concise yet informative style.No previous knowledge on reflection groups required

NEX 发表于 2025-3-25 15:20:04

Advanced Courses in Mathematics - CRM Barcelonahttp://image.papertrans.cn/a/image/156479.jpg

Omnipotent 发表于 2025-3-25 15:57:51

http://reply.papertrans.cn/16/1565/156479/156479_24.png

oracle 发表于 2025-3-25 22:54:38

http://reply.papertrans.cn/16/1565/156479/156479_25.png

撤退 发表于 2025-3-26 00:52:55

http://reply.papertrans.cn/16/1565/156479/156479_26.png

Keshan-disease 发表于 2025-3-26 05:40:12

https://doi.org/10.1007/978-1-349-11527-3chapter we study the Dunkl transform from the point of view of harmonic analysis. In Section 6.1 we show that the Dunkl transform is an isometry in . space with respect to the measure . on . and it preserves Schwartz class of functions.

Ganglion 发表于 2025-3-26 09:49:55

http://reply.papertrans.cn/16/1565/156479/156479_28.png

Lacunar-Stroke 发表于 2025-3-26 13:32:19

http://reply.papertrans.cn/16/1565/156479/156479_29.png

使无效 发表于 2025-3-26 18:14:18

http://reply.papertrans.cn/16/1565/156479/156479_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Analysis on h-Harmonics and Dunkl Transforms; Feng Dai,Yuan Xu,Sergey Tikhonov Textbook 2015 Springer Basel 2015 Dunkl transforms.h-harmon