SMART
发表于 2025-3-25 03:22:50
,Littlewood–Paley Theory and the Multiplier Theorem,The main result of this chapter is a Marcinkiewitcz multiplier theorem for .-harmonic expansions. Its proof uses general Littlewood–Paley theory for a symmetric diffusion semi-group. Several Littlewood–Paley type .-functions are introduced and studied via the Cesàro means for .-harmonic expansions.
粘土
发表于 2025-3-25 08:19:03
Feng Dai,Yuan Xu,Sergey TikhonovFocusses on the analysis side of h-harmonics and Dunkl transforms.Written in a concise yet informative style.No previous knowledge on reflection groups required
NEX
发表于 2025-3-25 15:20:04
Advanced Courses in Mathematics - CRM Barcelonahttp://image.papertrans.cn/a/image/156479.jpg
Omnipotent
发表于 2025-3-25 15:57:51
http://reply.papertrans.cn/16/1565/156479/156479_24.png
oracle
发表于 2025-3-25 22:54:38
http://reply.papertrans.cn/16/1565/156479/156479_25.png
撤退
发表于 2025-3-26 00:52:55
http://reply.papertrans.cn/16/1565/156479/156479_26.png
Keshan-disease
发表于 2025-3-26 05:40:12
https://doi.org/10.1007/978-1-349-11527-3chapter we study the Dunkl transform from the point of view of harmonic analysis. In Section 6.1 we show that the Dunkl transform is an isometry in . space with respect to the measure . on . and it preserves Schwartz class of functions.
Ganglion
发表于 2025-3-26 09:49:55
http://reply.papertrans.cn/16/1565/156479/156479_28.png
Lacunar-Stroke
发表于 2025-3-26 13:32:19
http://reply.papertrans.cn/16/1565/156479/156479_29.png
使无效
发表于 2025-3-26 18:14:18
http://reply.papertrans.cn/16/1565/156479/156479_30.png