gratuity
发表于 2025-3-21 16:25:51
书目名称Analysis on h-Harmonics and Dunkl Transforms影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0156479<br><br> <br><br>书目名称Analysis on h-Harmonics and Dunkl Transforms读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0156479<br><br> <br><br>
铁砧
发表于 2025-3-21 22:21:18
2297-0304 sis side of both h-harmonics and Dunkl transforms.Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.978-3-0348-0886-6978-3-0348-0887-3Series ISSN 2297-0304 Series E-ISSN 2297-0312
材料等
发表于 2025-3-22 01:13:53
http://reply.papertrans.cn/16/1565/156479/156479_3.png
暂停,间歇
发表于 2025-3-22 07:36:08
http://reply.papertrans.cn/16/1565/156479/156479_4.png
散布
发表于 2025-3-22 12:05:54
https://doi.org/10.1007/3-7643-7674-0ernel of the spherical .-harmonics. This expression is an analog of the zonal harmonics, which suggests a definition of a convolution operator, defined in Section 3.3 and it helps us to study various summability methods for spherical .-harmonic expansions.
Dysarthria
发表于 2025-3-22 15:03:12
Dunkl Operators Associated with Reflection Groups,mily of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertwining operator between the Dunkl operators and ordinary derivatives is discussed in Section 2.3.
Simulate
发表于 2025-3-22 17:31:18
http://reply.papertrans.cn/16/1565/156479/156479_7.png
防水
发表于 2025-3-23 00:40:52
https://doi.org/10.1007/3-7643-7674-0he classical spherical harmonics and the Fourier transform, in which the underlying rotation group is replaced by a finite reflection group. This chapter serves as an introduction, in which we briefly recall classical results on the spherical harmonics and the Fourier transform. Since all results ar
轻浮女
发表于 2025-3-23 02:37:55
https://doi.org/10.1007/3-7643-7674-0ghted spaces, we start with the definition of a family of weight functions invariant under a reflection group in Section 2.1. Dunkl operators are a family of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertw
一条卷发
发表于 2025-3-23 05:42:03
http://reply.papertrans.cn/16/1565/156479/156479_10.png