Incorporate
发表于 2025-3-23 10:29:43
An Introduction to the Theory of Multipliers978-3-642-65030-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
树木中
发表于 2025-3-23 16:07:44
http://reply.papertrans.cn/16/1557/155602/155602_12.png
contradict
发表于 2025-3-23 20:05:25
Die forstliche BestandesgründungOur purpose in this chapter is to present a development of much of the theory of multipliers for Banach algebras. It is neither exhaustive of the material nor is the development the most general one that could be made. Instead we have emphasized the problem of characterizing the multipliers of various abstract Banach algebras.
Thyroid-Gland
发表于 2025-3-24 01:22:42
The General Theory of Multipliers,Our purpose in this chapter is to present a development of much of the theory of multipliers for Banach algebras. It is neither exhaustive of the material nor is the development the most general one that could be made. Instead we have emphasized the problem of characterizing the multipliers of various abstract Banach algebras.
dominant
发表于 2025-3-24 02:36:38
The Multipliers for Commutative ,*-Algebras,s with the Banach algebra norm, b).c) .* . ≠ 0 if . ≠ 0 and d) <.,.> = <., .* .> for all ., ., .∈.. The standard example of an .*-algebra is the algebra .(.) for a compact group . with the usual convolution multiplication and scalar product. A general discussion of .*-algebras can be found in Loomis and Naimark .
lesion
发表于 2025-3-24 10:21:56
http://reply.papertrans.cn/16/1557/155602/155602_16.png
Trabeculoplasty
发表于 2025-3-24 12:13:42
https://doi.org/10.1007/978-3-642-65030-7Koordinatentransformation; Microsoft Access; Multiplikator; Volume; character; commutative property; funct
希望
发表于 2025-3-24 17:56:47
978-3-642-65032-1Springer-Verlag Berlin · Heidelberg 1971
多产鱼
发表于 2025-3-24 20:57:21
http://reply.papertrans.cn/16/1557/155602/155602_19.png
ONYM
发表于 2025-3-25 01:04:04
Die forstliche Bestandesgründungs with the Banach algebra norm, b).c) .* . ≠ 0 if . ≠ 0 and d) <.,.> = <., .* .> for all ., ., .∈.. The standard example of an .*-algebra is the algebra .(.) for a compact group . with the usual convolution multiplication and scalar product. A general discussion of .*-algebras can be found in Loomis