quick-relievers 发表于 2025-3-21 18:45:44

书目名称An Introduction to the Theory of Multipliers影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0155602<br><br>        <br><br>书目名称An Introduction to the Theory of Multipliers影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0155602<br><br>        <br><br>书目名称An Introduction to the Theory of Multipliers网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0155602<br><br>        <br><br>书目名称An Introduction to the Theory of Multipliers网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0155602<br><br>        <br><br>书目名称An Introduction to the Theory of Multipliers被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0155602<br><br>        <br><br>书目名称An Introduction to the Theory of Multipliers被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0155602<br><br>        <br><br>书目名称An Introduction to the Theory of Multipliers年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0155602<br><br>        <br><br>书目名称An Introduction to the Theory of Multipliers年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0155602<br><br>        <br><br>书目名称An Introduction to the Theory of Multipliers读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0155602<br><br>        <br><br>书目名称An Introduction to the Theory of Multipliers读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0155602<br><br>        <br><br>

贪婪性 发表于 2025-3-21 21:35:23

0072-7830as a whole and which would be accessible and readable to anyone with a basic knowledge of functional and harmonic analysis. I soon realized, however, that such a goal could not be attained. This realization is apparent in the preface to the preliminary version of the present work which was publishe

都相信我的话 发表于 2025-3-22 00:58:50

Fraktale Ereignisse und Cantor-Staubf nonnegative elements in . with respect to the given order by .. We define the space .(.), 1 ≦ . ≦ ∞, to be the closed ideal in the semi-simple Banach algebra .(.), l ≦ . ≦ ∞, consisting of all those .∈.(.) such that ., .∈. ~ . = .. Clearly each .(.), l ≦ . ≦ ∞, is a semi-simple Banach algebra with convolution multiplication.

敲诈 发表于 2025-3-22 08:20:58

http://reply.papertrans.cn/16/1557/155602/155602_4.png

overreach 发表于 2025-3-22 11:04:33

https://doi.org/10.1007/978-3-642-92156-8y of multipliers for commutative Banach algebras and for topological linear spaces. A general treatment of the important topic of multipliers for the .-spaces will be delayed until a subsequent chapter.

hemoglobin 发表于 2025-3-22 14:05:58

http://reply.papertrans.cn/16/1557/155602/155602_6.png

反省 发表于 2025-3-22 20:42:04

http://reply.papertrans.cn/16/1557/155602/155602_7.png

散步 发表于 2025-3-22 23:53:08

http://reply.papertrans.cn/16/1557/155602/155602_8.png

craven 发表于 2025-3-23 03:57:57

http://reply.papertrans.cn/16/1557/155602/155602_9.png

Condescending 发表于 2025-3-23 09:19:41

http://reply.papertrans.cn/16/1557/155602/155602_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: An Introduction to the Theory of Multipliers; Ronald Larsen Book 1971 Springer-Verlag Berlin · Heidelberg 1971 Koordinatentransformation.M