EVOKE 发表于 2025-3-21 18:04:17

书目名称An Introduction to Differential Manifolds影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0155217<br><br>        <br><br>书目名称An Introduction to Differential Manifolds影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0155217<br><br>        <br><br>书目名称An Introduction to Differential Manifolds网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0155217<br><br>        <br><br>书目名称An Introduction to Differential Manifolds网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0155217<br><br>        <br><br>书目名称An Introduction to Differential Manifolds被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0155217<br><br>        <br><br>书目名称An Introduction to Differential Manifolds被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0155217<br><br>        <br><br>书目名称An Introduction to Differential Manifolds年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0155217<br><br>        <br><br>书目名称An Introduction to Differential Manifolds年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0155217<br><br>        <br><br>书目名称An Introduction to Differential Manifolds读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0155217<br><br>        <br><br>书目名称An Introduction to Differential Manifolds读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0155217<br><br>        <br><br>

终止 发表于 2025-3-21 23:25:11

st to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful th978-3-319-35785-0978-3-319-20735-3

Munificent 发表于 2025-3-22 04:19:47

calculus in a manner which extends easily to the manifold se.This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master

摇晃 发表于 2025-3-22 05:21:09

Integration und strategisches Verhalten,he spirit of the book, the proofs we give will use differential geometry to the greatest extent possible. We nonetheless believe it would be interesting to sketch a purely Riemannian proof in this introduction. The price we pay is using certain notions that have not been introduced (geodesics, geodesic curvature), of which we give the idea.

人造 发表于 2025-3-22 12:21:44

http://reply.papertrans.cn/16/1553/155217/155217_5.png

obligation 发表于 2025-3-22 14:45:35

Lie Groups,y called “finite and continuous groups”, which in today’s language conveys groups of finite topological dimension. In fact many of the examples discovered were smooth manifolds, with smooth group operations. Today we call such groups Lie groups.

没有贫穷 发表于 2025-3-22 17:41:52

Differential Forms,t on .. Replacing the vectors .. by .. has the advantage of no longer requiring the inner product. We can then integrate curves on any manifold ., the “field of linear forms” . ↦ .., for all . ∈ ., where .. is a linear form on the tangent space ..., by writing

名词 发表于 2025-3-22 23:26:21

Textbook 2015ology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more s

Defense 发表于 2025-3-23 04:37:23

http://reply.papertrans.cn/16/1553/155217/155217_9.png

perpetual 发表于 2025-3-23 06:12:53

http://reply.papertrans.cn/16/1553/155217/155217_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: An Introduction to Differential Manifolds; Jacques Lafontaine Textbook 2015 Springer International Publishing Switzerland 2015 De Rham Coh