小官 发表于 2025-3-23 10:15:52

http://reply.papertrans.cn/95/9426/942522/942522_11.png

放牧 发表于 2025-3-23 16:05:59

Book 2024based UDA, which creatively leverages adversarial learning by conducting a minimax game between the feature extractor and two task classifiers. The third section introduces source-free UDA, a novel UDA setting that does not require any raw data from the source domain. The fourth section presents act

捐助 发表于 2025-3-23 18:08:44

http://reply.papertrans.cn/95/9426/942522/942522_13.png

Mettle 发表于 2025-3-24 02:05:24

http://reply.papertrans.cn/95/9426/942522/942522_14.png

Peak-Bone-Mass 发表于 2025-3-24 03:29:59

http://reply.papertrans.cn/95/9426/942522/942522_15.png

Jocose 发表于 2025-3-24 09:17:11

http://reply.papertrans.cn/95/9426/942522/942522_16.png

污点 发表于 2025-3-24 12:11:23

http://reply.papertrans.cn/95/9426/942522/942522_17.png

不自然 发表于 2025-3-24 16:21:02

http://reply.papertrans.cn/95/9426/942522/942522_18.png

antenna 发表于 2025-3-24 19:36:15

Active Learning for Unsupervised Domain Adaptation,roduces two novel techniques to address key limitations of existing active domain adaptation (ADA) methods: estimating target representativeness without source data access and probabilistic uncertainty estimation. First, an energy-based criterion is proposed for selecting representative target sampl

Genistein 发表于 2025-3-25 03:13:12

Continual Test-Time Unsupervised Domain Adaptation,main data during inference with a continuously changing data distribution. Previous methods have been found to lack noise robustness, leading to a significant increase in errors under strong noise. In this chapter, we address the noise robustness problem in continual TTA by offering three effective
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Unsupervised Domain Adaptation; Recent Advances and Jingjing Li,Lei Zhu,Zhekai Du Book 2024 The Editor(s) (if applicable) and The Author(s