CHARY
发表于 2025-3-21 19:30:21
书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0941131<br><br> <br><br>书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0941131<br><br> <br><br>书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0941131<br><br> <br><br>书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0941131<br><br> <br><br>书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0941131<br><br> <br><br>书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0941131<br><br> <br><br>书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0941131<br><br> <br><br>书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0941131<br><br> <br><br>书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0941131<br><br> <br><br>书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0941131<br><br> <br><br>
Visual-Acuity
发表于 2025-3-21 20:24:13
http://reply.papertrans.cn/95/9412/941131/941131_2.png
LIEN
发表于 2025-3-22 01:35:11
http://reply.papertrans.cn/95/9412/941131/941131_3.png
Interim
发表于 2025-3-22 06:41:22
http://reply.papertrans.cn/95/9412/941131/941131_4.png
现任者
发表于 2025-3-22 12:01:29
http://reply.papertrans.cn/95/9412/941131/941131_5.png
背景
发表于 2025-3-22 13:35:36
Uncertainty-Aware Bayesian Deep Learning with Noisy Training Labels for Epileptic Seizure Detectionground truth” information about the target phenomena. In actuality, the labels, often derived from human annotations, are noisy/unreliable. This . poses significant challenges for modalities such as electroencephalography (EEG), in which “ground truth” is difficult to ascertain without invasive expe
拖网
发表于 2025-3-22 18:45:17
http://reply.papertrans.cn/95/9412/941131/941131_7.png
能够支付
发表于 2025-3-22 23:09:34
http://reply.papertrans.cn/95/9412/941131/941131_8.png
擦试不掉
发表于 2025-3-23 03:22:23
Diagnose with Uncertainty Awareness: Diagnostic Uncertainty Encoding Framework for Radiology Report ance the efficiency of radiologist decision-making. For clinical accuracy, most existing approaches focus on achieving accurate predictions of the existence of abnormalities, despite the inherent uncertainty impacting the reliability of the generated report, which is often clarified by radiologists
WAIL
发表于 2025-3-23 08:32:19
Making Deep Learning Models Clinically Useful - Improving Diagnostic Confidence in Inherited Retinale methods lack transparency and interpretability of point predictions without assessing the quality of their outputs. Knowing how much confidence there is in a prediction is essential for gaining clinicians’ trust in the technology and its use in medical decision-making. In this paper, we explore th