onychomycosis 发表于 2025-3-21 16:03:51
书目名称The Ricci Flow in Riemannian Geometry影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0918623<br><br> <br><br>书目名称The Ricci Flow in Riemannian Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0918623<br><br> <br><br>书目名称The Ricci Flow in Riemannian Geometry网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0918623<br><br> <br><br>书目名称The Ricci Flow in Riemannian Geometry网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0918623<br><br> <br><br>书目名称The Ricci Flow in Riemannian Geometry被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0918623<br><br> <br><br>书目名称The Ricci Flow in Riemannian Geometry被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0918623<br><br> <br><br>书目名称The Ricci Flow in Riemannian Geometry年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0918623<br><br> <br><br>书目名称The Ricci Flow in Riemannian Geometry年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0918623<br><br> <br><br>书目名称The Ricci Flow in Riemannian Geometry读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0918623<br><br> <br><br>书目名称The Ricci Flow in Riemannian Geometry读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0918623<br><br> <br><br>nonsensical 发表于 2025-3-21 23:20:25
Book 2011 existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman‘s noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiableAbutment 发表于 2025-3-22 04:17:22
0075-8434 uitable for geometric PDE.A discussion of the history of theThis book focuses on Hamilton‘s Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perel厚颜无耻 发表于 2025-3-22 06:23:01
978-3-642-16285-5Springer-Verlag Berlin Heidelberg 2011孤僻 发表于 2025-3-22 09:41:36
http://reply.papertrans.cn/92/9187/918623/918623_5.png厌倦吗你 发表于 2025-3-22 14:32:12
Ben Andrews,Christopher HopperA self contained presentation of the proof of the differentiable sphere theorem.A presentation of the geometry of vector bundles in a form suitable for geometric PDE.A discussion of the history of theSKIFF 发表于 2025-3-22 18:01:59
Book 2011 existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman‘s noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.adroit 发表于 2025-3-22 21:34:55
Lecture Notes in Mathematicshttp://image.papertrans.cn/t/image/918623.jpgprick-test 发表于 2025-3-23 01:33:58
https://doi.org/10.1007/978-3-642-16286-235-XX, 53-XX, 58-XX; Ricci flow; Riemannian geometry; Sphere theorem; partial differential equationsMEEK 发表于 2025-3-23 07:08:12
http://reply.papertrans.cn/92/9187/918623/918623_10.png