onychomycosis 发表于 2025-3-21 16:03:51

书目名称The Ricci Flow in Riemannian Geometry影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0918623<br><br>        <br><br>书目名称The Ricci Flow in Riemannian Geometry影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0918623<br><br>        <br><br>书目名称The Ricci Flow in Riemannian Geometry网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0918623<br><br>        <br><br>书目名称The Ricci Flow in Riemannian Geometry网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0918623<br><br>        <br><br>书目名称The Ricci Flow in Riemannian Geometry被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0918623<br><br>        <br><br>书目名称The Ricci Flow in Riemannian Geometry被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0918623<br><br>        <br><br>书目名称The Ricci Flow in Riemannian Geometry年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0918623<br><br>        <br><br>书目名称The Ricci Flow in Riemannian Geometry年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0918623<br><br>        <br><br>书目名称The Ricci Flow in Riemannian Geometry读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0918623<br><br>        <br><br>书目名称The Ricci Flow in Riemannian Geometry读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0918623<br><br>        <br><br>

nonsensical 发表于 2025-3-21 23:20:25

Book 2011 existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman‘s noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable

Abutment 发表于 2025-3-22 04:17:22

0075-8434 uitable for geometric PDE.A discussion of the history of theThis book focuses on Hamilton‘s Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perel

厚颜无耻 发表于 2025-3-22 06:23:01

978-3-642-16285-5Springer-Verlag Berlin Heidelberg 2011

孤僻 发表于 2025-3-22 09:41:36

http://reply.papertrans.cn/92/9187/918623/918623_5.png

厌倦吗你 发表于 2025-3-22 14:32:12

Ben Andrews,Christopher HopperA self contained presentation of the proof of the differentiable sphere theorem.A presentation of the geometry of vector bundles in a form suitable for geometric PDE.A discussion of the history of the

SKIFF 发表于 2025-3-22 18:01:59

Book 2011 existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman‘s noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.

adroit 发表于 2025-3-22 21:34:55

Lecture Notes in Mathematicshttp://image.papertrans.cn/t/image/918623.jpg

prick-test 发表于 2025-3-23 01:33:58

https://doi.org/10.1007/978-3-642-16286-235-XX, 53-XX, 58-XX; Ricci flow; Riemannian geometry; Sphere theorem; partial differential equations

MEEK 发表于 2025-3-23 07:08:12

http://reply.papertrans.cn/92/9187/918623/918623_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: The Ricci Flow in Riemannian Geometry; A Complete Proof of Ben Andrews,Christopher Hopper Book 2011 Springer-Verlag Berlin Heidelberg 2011