监管 发表于 2025-3-21 19:55:27

书目名称The Non-Euclidean, Hyperbolic Plane影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0915073<br><br>        <br><br>书目名称The Non-Euclidean, Hyperbolic Plane影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0915073<br><br>        <br><br>书目名称The Non-Euclidean, Hyperbolic Plane网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0915073<br><br>        <br><br>书目名称The Non-Euclidean, Hyperbolic Plane网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0915073<br><br>        <br><br>书目名称The Non-Euclidean, Hyperbolic Plane被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0915073<br><br>        <br><br>书目名称The Non-Euclidean, Hyperbolic Plane被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0915073<br><br>        <br><br>书目名称The Non-Euclidean, Hyperbolic Plane年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0915073<br><br>        <br><br>书目名称The Non-Euclidean, Hyperbolic Plane年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0915073<br><br>        <br><br>书目名称The Non-Euclidean, Hyperbolic Plane读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0915073<br><br>        <br><br>书目名称The Non-Euclidean, Hyperbolic Plane读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0915073<br><br>        <br><br>

离开真充足 发表于 2025-3-21 23:39:27

0172-5939those aspects of hyperbolic plane geometry which contribute to the skills, knowledge, and insights needed to teach eucli­ dean geometry with some mastery.978-0-387-90552-5978-1-4613-8125-9Series ISSN 0172-5939 Series E-ISSN 2191-6675

ANTI 发表于 2025-3-22 01:42:53

http://reply.papertrans.cn/92/9151/915073/915073_3.png

无法破译 发表于 2025-3-22 07:26:51

The Non-Euclidean, Hyperbolic Plane978-1-4613-8125-9Series ISSN 0172-5939 Series E-ISSN 2191-6675

Addictive 发表于 2025-3-22 10:57:14

Universitexthttp://image.papertrans.cn/t/image/915073.jpg

EWE 发表于 2025-3-22 13:04:00

http://reply.papertrans.cn/92/9151/915073/915073_6.png

compel 发表于 2025-3-22 17:32:18

http://reply.papertrans.cn/92/9151/915073/915073_7.png

Entreaty 发表于 2025-3-22 23:16:43

0172-5939on man‘s understanding of mathematics and the relation of mathematical geometry to the physical world. It is now possible, due in large part to axioms devised by George Birkhoff, to give an accurate, elementary development of hyperbolic plane geometry. Also, using the Poincare model and inversive g

obstruct 发表于 2025-3-23 04:33:55

9楼

不能平静 发表于 2025-3-23 05:34:09

10楼
页: [1] 2 3 4
查看完整版本: Titlebook: The Non-Euclidean, Hyperbolic Plane; Its Structure and Co Paul Kelly,Gordon Matthews Textbook 1981 Springer-Verlag New York, Inc. 1981 Hype