驼峰 发表于 2025-3-21 19:18:34
书目名称The Local Langlands Conjecture for GL(2)影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0913215<br><br> <br><br>书目名称The Local Langlands Conjecture for GL(2)影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0913215<br><br> <br><br>书目名称The Local Langlands Conjecture for GL(2)网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0913215<br><br> <br><br>书目名称The Local Langlands Conjecture for GL(2)网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0913215<br><br> <br><br>书目名称The Local Langlands Conjecture for GL(2)被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0913215<br><br> <br><br>书目名称The Local Langlands Conjecture for GL(2)被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0913215<br><br> <br><br>书目名称The Local Langlands Conjecture for GL(2)年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0913215<br><br> <br><br>书目名称The Local Langlands Conjecture for GL(2)年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0913215<br><br> <br><br>书目名称The Local Langlands Conjecture for GL(2)读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0913215<br><br> <br><br>书目名称The Local Langlands Conjecture for GL(2)读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0913215<br><br> <br><br>性满足 发表于 2025-3-21 22:46:59
http://reply.papertrans.cn/92/9133/913215/913215_2.png幼儿 发表于 2025-3-22 00:29:52
https://doi.org/10.1007/3-540-31511-XLocal Langlands correspondence; Representation theory; Weil group; finite field; functional equation; smoSHOCK 发表于 2025-3-22 05:38:58
http://reply.papertrans.cn/92/9133/913215/913215_4.pngindenture 发表于 2025-3-22 10:31:25
http://reply.papertrans.cn/92/9133/913215/913215_5.pngpalette 发表于 2025-3-22 14:24:48
0072-7830 by authors who have contributed significantly to the Langlan.If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive intAxon895 发表于 2025-3-22 17:03:52
Book 2006ative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n,F). The local Langlands Conjecture for GL(n) postulates举止粗野的人 发表于 2025-3-22 23:09:41
http://reply.papertrans.cn/92/9133/913215/913215_8.pngnascent 发表于 2025-3-23 02:52:01
http://reply.papertrans.cn/92/9133/913215/913215_9.png指令 发表于 2025-3-23 08:51:58
10楼