不让做的事 发表于 2025-3-21 18:19:02
书目名称The Geometry of Walker Manifolds影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0910550<br><br> <br><br>书目名称The Geometry of Walker Manifolds影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0910550<br><br> <br><br>书目名称The Geometry of Walker Manifolds网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0910550<br><br> <br><br>书目名称The Geometry of Walker Manifolds网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0910550<br><br> <br><br>书目名称The Geometry of Walker Manifolds被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0910550<br><br> <br><br>书目名称The Geometry of Walker Manifolds被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0910550<br><br> <br><br>书目名称The Geometry of Walker Manifolds年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0910550<br><br> <br><br>书目名称The Geometry of Walker Manifolds年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0910550<br><br> <br><br>书目名称The Geometry of Walker Manifolds读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0910550<br><br> <br><br>书目名称The Geometry of Walker Manifolds读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0910550<br><br> <br><br>extinct 发表于 2025-3-21 20:40:07
http://reply.papertrans.cn/92/9106/910550/910550_2.pngcluster 发表于 2025-3-22 01:36:05
http://reply.papertrans.cn/92/9106/910550/910550_3.png松果 发表于 2025-3-22 05:42:54
Book 2009 (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite diffvascular 发表于 2025-3-22 11:11:50
1938-1743manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are蛤肉 发表于 2025-3-22 14:19:47
1938-1743 s and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then978-3-031-01269-3978-3-031-02397-2Series ISSN 1938-1743 Series E-ISSN 1938-1751使困惑 发表于 2025-3-22 17:53:09
Book 2009 pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then烦扰 发表于 2025-3-22 22:31:00
http://reply.papertrans.cn/92/9106/910550/910550_8.pngForeshadow 发表于 2025-3-23 01:33:00
http://reply.papertrans.cn/92/9106/910550/910550_9.pngCUMB 发表于 2025-3-23 08:09:15
Anwendungen der Matrizenrechnung auf die Ausgleichsrechnung,Die Matrizenrechnung ist eine mathematische Disziplin mit der Aufgabe, umfangreiche numerische Probleme übersichtlich darzustellen. Sie ist aber keineswegs nur eine Stenographie der Formeln, sondern ihre Gesetze erlauben auch spezielle Matrizenlösungen, und ihre Sprache ermöglicht eine klare Interpretation komplizierter Rechenvorgänge..