PLIC 发表于 2025-3-23 12:16:07
cal phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents the canonical form of solitons. Also, there exists a class of nonlinear partial differential equations that led to solitons, e.g., Kadomtsev-Petviashvili (KP), Klein-Gordon (KG), Sine-Gordon (SG), Non-LiAnecdote 发表于 2025-3-23 14:30:35
Klaus Schenckhat lead to tsunami, and their methods and solutions.This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents t离开 发表于 2025-3-23 20:20:55
Klaus Schenck,Jürgen Brückner,Ulrike Bossmannhat lead to tsunami, and their methods and solutions.This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents t渗透 发表于 2025-3-24 00:59:37
Klaus Schenck,Jürgen Brücknercal phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents the canonical form of solitons. Also, there exists a class of nonlinear partial differential equations that led to solitons, e.g., Kadomtsev-Petviashvili (KP), Klein-Gordon (KG), Sine-Gordon (SG), Non-Liheckle 发表于 2025-3-24 06:26:39
http://reply.papertrans.cn/89/8848/884786/884786_15.png肮脏 发表于 2025-3-24 10:08:08
Jochen Schweitzer Dipl. Psych.,Ulrike Bossmann Dipl. Psych., Dipl. Betriebsw. (BA)hat lead to tsunami, and their methods and solutions.This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents tPAGAN 发表于 2025-3-24 12:25:19
http://reply.papertrans.cn/89/8848/884786/884786_17.pngAnticonvulsants 发表于 2025-3-24 17:05:15
978-3-658-03146-6Springer Fachmedien Wiesbaden 2013休战 发表于 2025-3-24 23:04:51
Demografischer Wandel: Eine kurze Einführung in eine populäre PrognoseEr kommt gewiss. Er ist schon längst da. Beinahe könnte man sagen: Nichts ist so sicher wie der demografische Wandel – oder?Cumbersome 发表于 2025-3-25 01:21:45
Wen muss das interessieren? Die Relevanz des demografischen Wandels für Mitarbeiter, Führungskräfte Angesichts der Schrumpfungs- und Alterungsphänomene der Gesellschaft wollen wir nun die Frage beantworten, worin sich demografische Entwicklungen aus der Innensicht von Organisationen niederschlagen.