漏出 发表于 2025-3-21 18:21:14
书目名称Symplectic Integration of Stochastic Hamiltonian Systems影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0884010<br><br> <br><br>书目名称Symplectic Integration of Stochastic Hamiltonian Systems影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0884010<br><br> <br><br>书目名称Symplectic Integration of Stochastic Hamiltonian Systems网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0884010<br><br> <br><br>书目名称Symplectic Integration of Stochastic Hamiltonian Systems网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0884010<br><br> <br><br>书目名称Symplectic Integration of Stochastic Hamiltonian Systems被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0884010<br><br> <br><br>书目名称Symplectic Integration of Stochastic Hamiltonian Systems被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0884010<br><br> <br><br>书目名称Symplectic Integration of Stochastic Hamiltonian Systems年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0884010<br><br> <br><br>书目名称Symplectic Integration of Stochastic Hamiltonian Systems年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0884010<br><br> <br><br>书目名称Symplectic Integration of Stochastic Hamiltonian Systems读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0884010<br><br> <br><br>书目名称Symplectic Integration of Stochastic Hamiltonian Systems读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0884010<br><br> <br><br>phase-2-enzyme 发表于 2025-3-21 21:59:48
http://reply.papertrans.cn/89/8841/884010/884010_2.png悲观 发表于 2025-3-22 03:53:23
http://reply.papertrans.cn/89/8841/884010/884010_3.png未完成 发表于 2025-3-22 05:42:29
http://reply.papertrans.cn/89/8841/884010/884010_4.png轻触 发表于 2025-3-22 09:59:06
Infinite-Dimensional Stochastic Hamiltonian Systems,mplectic discretizations of the stochastic linear Schrödinger equation can approximate the large deviations rate function of the observable, which provides a method of approximating large deviations rate function from the viewpoint of numerical discretization.故意钓到白杨 发表于 2025-3-22 15:30:12
Stochastic Modified Equations and Applications,llows that a symplectic method can be approximated by a perturbed Hamiltonian system. A natural question is whether such theory could be extended to the stochastic differential equation and in which sense. This is an important and subtle question, since, unlike the deterministic case, there exist va遗忘 发表于 2025-3-22 20:18:49
Infinite-Dimensional Stochastic Hamiltonian Systems,uid mechanics, etc. As in the finite-dimensional case, one of inherent canonical properties of infinite-dimensional stochastic Hamiltonian systems is that black the phase flow preserves the infinite-dimensional stochastic symplectic structure. In this chapter, we will investigate this geometric stru加剧 发表于 2025-3-22 23:46:57
http://reply.papertrans.cn/89/8841/884010/884010_8.png一瞥 发表于 2025-3-23 03:19:47
Symplectic Integration of Stochastic Hamiltonian SystemsNUL 发表于 2025-3-23 08:17:22
http://reply.papertrans.cn/89/8841/884010/884010_10.png