与生 发表于 2025-3-21 19:51:07

书目名称Symplectic Geometry, Groupoids, and Integrable Systems影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0884009<br><br>        <br><br>书目名称Symplectic Geometry, Groupoids, and Integrable Systems影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0884009<br><br>        <br><br>书目名称Symplectic Geometry, Groupoids, and Integrable Systems网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0884009<br><br>        <br><br>书目名称Symplectic Geometry, Groupoids, and Integrable Systems网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0884009<br><br>        <br><br>书目名称Symplectic Geometry, Groupoids, and Integrable Systems被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0884009<br><br>        <br><br>书目名称Symplectic Geometry, Groupoids, and Integrable Systems被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0884009<br><br>        <br><br>书目名称Symplectic Geometry, Groupoids, and Integrable Systems年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0884009<br><br>        <br><br>书目名称Symplectic Geometry, Groupoids, and Integrable Systems年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0884009<br><br>        <br><br>书目名称Symplectic Geometry, Groupoids, and Integrable Systems读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0884009<br><br>        <br><br>书目名称Symplectic Geometry, Groupoids, and Integrable Systems读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0884009<br><br>        <br><br>

ATP861 发表于 2025-3-21 23:23:48

Symplectic Geometry, Groupoids, and Integrable Systems978-1-4613-9719-9Series ISSN 0940-4740

诱骗 发表于 2025-3-22 01:52:50

http://reply.papertrans.cn/89/8841/884009/884009_3.png

LATE 发表于 2025-3-22 06:29:21

http://reply.papertrans.cn/89/8841/884009/884009_4.png

同音 发表于 2025-3-22 12:07:34

,Sur Quelques Questions de Géométrie Symplectique,This paper summarizes a talk that I gave at the Mathematical Science Research Institute (Berkeley) in June 1989. I consider .-homogeneous symplectic manifolds (.) where . is a solvable Lie group. When the symplectic action . × . → . is “regular” and “closed” I sketch the proof of two main results:

仪式 发表于 2025-3-22 14:21:43

,La Première Classe de Chern Comme Obstruction à la Quantification Asymptotique,Notre travail trouve son origine dans un article de Karašev et Maslov sur la quantification d’une variété symplectique générale [.]. Cet article pose de nombreux problèmes et contient plusieurs points obscurs, que nous clarifions, ce qui nous permet de répondre positivement à certaines conjectures.

个阿姨勾引你 发表于 2025-3-22 18:15:29

http://reply.papertrans.cn/89/8841/884009/884009_7.png

Arctic 发表于 2025-3-22 22:37:25

On the Diameter of the Symplectomorphism Group of the Ball,It is shown that the diameter of the symplectomorphism group of the ball in ℝ. is infinite.

别炫耀 发表于 2025-3-23 02:20:06

A Symplectic Analogue of the Mostow-Palais Theorem,We show that given a Hamiltonian action of a compact and connected Lie group . on a symplectic manifold (.) of finite type, there exists a linear symplectic action of . on some .. equipped with its standard symplectic structure such that (.) can be realized as a reduction of this .. with the induced action of ..

食料 发表于 2025-3-23 09:05:07

A Non-Linear Hadamard Theorem,Using Gromov theory of pseudo-holomorphic curves, we derive a pseudo-holomorphic version of the classical result of Hadamard: a holomorphic function with bounded real part is constant. It is a pleasure to thank Gilbert Hector for providing a much simpler proof of Proposition 1, Michel N’Guiffo Boyom and the referee for valuable remarks.
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Symplectic Geometry, Groupoids, and Integrable Systems; Séminaire Sud Rhodan Pierre Dazord,Alan Weinstein Conference proceedings 1991 Sprin