上釉彩 发表于 2025-3-25 04:12:01
The Number of Young TableauxAs we have seen before, a Schur polynomial is equal to the sum of monomials for Young tableaux of a given shape. In this chapter we address the following question: what is the number of such tableaux?Mhc-Molecule 发表于 2025-3-25 08:03:54
Problem Set 1Consider the space Ω(.) ⊂ Λ(.) of homogeneous . functions of degree .:Axon895 发表于 2025-3-25 13:26:41
http://reply.papertrans.cn/89/8839/883879/883879_23.png结构 发表于 2025-3-25 19:53:47
http://reply.papertrans.cn/89/8839/883879/883879_24.png名次后缀 发表于 2025-3-25 22:16:00
http://reply.papertrans.cn/89/8839/883879/883879_25.png多嘴 发表于 2025-3-26 03:13:37
http://reply.papertrans.cn/89/8839/883879/883879_26.pngneurologist 发表于 2025-3-26 04:47:48
The Symmetric GroupThis part will be devoted to the study of .: functions that are symmetric in some variables, while not necessarily being symmetric in the others. More precisely, we will be working with .; as we will see, they generalize the notion of Schur polynomials.glomeruli 发表于 2025-3-26 11:11:33
http://reply.papertrans.cn/89/8839/883879/883879_28.png无脊椎 发表于 2025-3-26 14:50:41
http://reply.papertrans.cn/89/8839/883879/883879_29.png委托 发表于 2025-3-26 20:24:51
Problem Set 3This series of exercises presents another proof of the Bereron–Billey–Fomin– Kirillov theorem on equivalence of algebraic and combinatorial definitions of Schubert polynomials (cf. ).