上釉彩
发表于 2025-3-25 04:12:01
The Number of Young TableauxAs we have seen before, a Schur polynomial is equal to the sum of monomials for Young tableaux of a given shape. In this chapter we address the following question: what is the number of such tableaux?
Mhc-Molecule
发表于 2025-3-25 08:03:54
Problem Set 1Consider the space Ω(.) ⊂ Λ(.) of homogeneous . functions of degree .:
Axon895
发表于 2025-3-25 13:26:41
http://reply.papertrans.cn/89/8839/883879/883879_23.png
结构
发表于 2025-3-25 19:53:47
http://reply.papertrans.cn/89/8839/883879/883879_24.png
名次后缀
发表于 2025-3-25 22:16:00
http://reply.papertrans.cn/89/8839/883879/883879_25.png
多嘴
发表于 2025-3-26 03:13:37
http://reply.papertrans.cn/89/8839/883879/883879_26.png
neurologist
发表于 2025-3-26 04:47:48
The Symmetric GroupThis part will be devoted to the study of .: functions that are symmetric in some variables, while not necessarily being symmetric in the others. More precisely, we will be working with .; as we will see, they generalize the notion of Schur polynomials.
glomeruli
发表于 2025-3-26 11:11:33
http://reply.papertrans.cn/89/8839/883879/883879_28.png
无脊椎
发表于 2025-3-26 14:50:41
http://reply.papertrans.cn/89/8839/883879/883879_29.png
委托
发表于 2025-3-26 20:24:51
Problem Set 3This series of exercises presents another proof of the Bereron–Billey–Fomin– Kirillov theorem on equivalence of algebraic and combinatorial definitions of Schubert polynomials (cf. ).