Counteract 发表于 2025-3-23 12:11:41

http://reply.papertrans.cn/89/8839/883879/883879_11.png

Fissure 发表于 2025-3-23 17:49:45

Symmetric Polynomialss quite a long process, and it is possible to make a mistake during the computations, so it is better to proceed in a different way: observe that, according to Viete’s theorem, we have .1 + .2 = −., .1.2 = ..

没有希望 发表于 2025-3-23 19:48:37

Combinatorial Presentation of Schubert Polynomialst polynomials are actual polynomials, not rational functions. More surprisingly, even though these are divided . operators, the coefficients of Schubert polynomials turn out to be ., as we saw in Corollary 12.17.

GIST 发表于 2025-3-23 23:40:31

978-3-031-50343-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl

允许 发表于 2025-3-24 03:38:08

Symmetric Functions: A Beginner‘s Course978-3-031-50341-2Series ISSN 2522-0314 Series E-ISSN 2522-0322

consolidate 发表于 2025-3-24 08:14:30

http://reply.papertrans.cn/89/8839/883879/883879_16.png

轻率的你 发表于 2025-3-24 13:52:45

http://reply.papertrans.cn/89/8839/883879/883879_17.png

epidermis 发表于 2025-3-24 15:09:30

http://reply.papertrans.cn/89/8839/883879/883879_18.png

AFFIX 发表于 2025-3-24 19:45:04

http://reply.papertrans.cn/89/8839/883879/883879_19.png

包庇 发表于 2025-3-25 01:43:34

The Ring of Symmetric FunctionsWe have already computed this determinant (cf. Problem 2.2), but for the sake of completeness let us do it again.
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Symmetric Functions: A Beginner‘s Course; Evgeny Smirnov,Anna Tutubalina Textbook 2024 The Editor(s) (if applicable) and The Author(s), un