补角
发表于 2025-3-25 05:00:36
dicts the desired goal robustly by associating instances in a scene graph with a user command. Finally, the navigation system enables the robot to reach the goal location. Our evaluation result shows SGGNet achieves a grounding accuracy of 77.8% given 3, 000 scene graphs and 9, 000 natural language
tattle
发表于 2025-3-25 08:05:06
http://reply.papertrans.cn/89/8817/881680/881680_22.png
LEVER
发表于 2025-3-25 13:54:21
ic information about transitions between states and only probablistic knowledge of the identity of the current state. Using this theoretical framework we can then determine whether it is at all possible for a given robot to learn some specific environment and, if so, how long this can be expected to
CAGE
发表于 2025-3-25 16:33:18
http://reply.papertrans.cn/89/8817/881680/881680_24.png
钩针织物
发表于 2025-3-25 21:42:39
http://reply.papertrans.cn/89/8817/881680/881680_25.png
Matrimony
发表于 2025-3-26 04:11:02
http://reply.papertrans.cn/89/8817/881680/881680_26.png
addition
发表于 2025-3-26 06:58:55
http://reply.papertrans.cn/89/8817/881680/881680_27.png
Flatus
发表于 2025-3-26 09:32:38
y including friction, hysteresis, and parameter variation. To overcome this problem, I will propose a robust control strategy based on a coarse model of deformable objects. I will build a coarse model of an object for its positioning and will develop a control method robust to the discrepancy betwee
Adulate
发表于 2025-3-26 15:21:08
http://reply.papertrans.cn/89/8817/881680/881680_29.png
Salivary-Gland
发表于 2025-3-26 17:42:59
http://reply.papertrans.cn/89/8817/881680/881680_30.png