补角 发表于 2025-3-25 05:00:36
dicts the desired goal robustly by associating instances in a scene graph with a user command. Finally, the navigation system enables the robot to reach the goal location. Our evaluation result shows SGGNet achieves a grounding accuracy of 77.8% given 3, 000 scene graphs and 9, 000 natural languagetattle 发表于 2025-3-25 08:05:06
http://reply.papertrans.cn/89/8817/881680/881680_22.pngLEVER 发表于 2025-3-25 13:54:21
ic information about transitions between states and only probablistic knowledge of the identity of the current state. Using this theoretical framework we can then determine whether it is at all possible for a given robot to learn some specific environment and, if so, how long this can be expected toCAGE 发表于 2025-3-25 16:33:18
http://reply.papertrans.cn/89/8817/881680/881680_24.png钩针织物 发表于 2025-3-25 21:42:39
http://reply.papertrans.cn/89/8817/881680/881680_25.pngMatrimony 发表于 2025-3-26 04:11:02
http://reply.papertrans.cn/89/8817/881680/881680_26.pngaddition 发表于 2025-3-26 06:58:55
http://reply.papertrans.cn/89/8817/881680/881680_27.pngFlatus 发表于 2025-3-26 09:32:38
y including friction, hysteresis, and parameter variation. To overcome this problem, I will propose a robust control strategy based on a coarse model of deformable objects. I will build a coarse model of an object for its positioning and will develop a control method robust to the discrepancy betweeAdulate 发表于 2025-3-26 15:21:08
http://reply.papertrans.cn/89/8817/881680/881680_29.pngSalivary-Gland 发表于 2025-3-26 17:42:59
http://reply.papertrans.cn/89/8817/881680/881680_30.png