Malinger 发表于 2025-3-21 19:44:58

书目名称Statistical Learning from a Regression Perspective影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0876464<br><br>        <br><br>书目名称Statistical Learning from a Regression Perspective影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0876464<br><br>        <br><br>书目名称Statistical Learning from a Regression Perspective网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0876464<br><br>        <br><br>书目名称Statistical Learning from a Regression Perspective网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0876464<br><br>        <br><br>书目名称Statistical Learning from a Regression Perspective被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0876464<br><br>        <br><br>书目名称Statistical Learning from a Regression Perspective被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0876464<br><br>        <br><br>书目名称Statistical Learning from a Regression Perspective年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0876464<br><br>        <br><br>书目名称Statistical Learning from a Regression Perspective年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0876464<br><br>        <br><br>书目名称Statistical Learning from a Regression Perspective读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0876464<br><br>        <br><br>书目名称Statistical Learning from a Regression Perspective读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0876464<br><br>        <br><br>

doxazosin 发表于 2025-3-21 21:29:26

http://reply.papertrans.cn/88/8765/876464/876464_2.png

Endometrium 发表于 2025-3-22 02:09:39

http://reply.papertrans.cn/88/8765/876464/876464_3.png

Dawdle 发表于 2025-3-22 07:05:50

Statistical Learning as a Regression Problem,ion by some as a form of supervised machine learning. Once these points are made, the chapter turns to several key statistical concepts needed for statistical learning: overfitting, data snooping, loss functions, linear estimators, linear basis expansions, the bias–variance tradeoff, resampling, algorithms versus models, and others.

暴露他抗议 发表于 2025-3-22 10:25:24

Neural Networks,al networks,” or more broadly, “deep learning.” These newer developments have generated both genuine excitement and some self-serving hype. In this chapter, we will begin with early neural networks and end with some of the impressive recent advances.

guzzle 发表于 2025-3-22 15:56:56

http://reply.papertrans.cn/88/8765/876464/876464_6.png

漫步 发表于 2025-3-22 20:35:37

Classification and Regression Trees (CART), also see that although recursive partitioning has too many problems to be an effective, stand-alone data analysis procedure, it is a crucial component of more powerful algorithms discussed in later chapters. It is important, therefore, to get into the details.

占线 发表于 2025-3-23 00:34:36

http://reply.papertrans.cn/88/8765/876464/876464_8.png

阴险 发表于 2025-3-23 05:19:53

Boosting,ore poorly on the last pass are given more weight. In that way, the algorithm works more diligently to fit the hard-to-fit observations. In the end, each set of fitted values is combined in an averaging process that serves as a regularizer. Boosting can be a very effective statistical learning procedure.

要求比…更好 发表于 2025-3-23 07:57:13

http://reply.papertrans.cn/88/8765/876464/876464_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Statistical Learning from a Regression Perspective; Richard A. Berk Textbook 2020Latest edition Springer Nature Switzerland AG 2020 classi