Forestall 发表于 2025-3-21 16:49:35
书目名称Squigonometry: The Study of Imperfect Circles影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0875124<br><br> <br><br>书目名称Squigonometry: The Study of Imperfect Circles影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0875124<br><br> <br><br>书目名称Squigonometry: The Study of Imperfect Circles网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0875124<br><br> <br><br>书目名称Squigonometry: The Study of Imperfect Circles网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0875124<br><br> <br><br>书目名称Squigonometry: The Study of Imperfect Circles被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0875124<br><br> <br><br>书目名称Squigonometry: The Study of Imperfect Circles被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0875124<br><br> <br><br>书目名称Squigonometry: The Study of Imperfect Circles年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0875124<br><br> <br><br>书目名称Squigonometry: The Study of Imperfect Circles年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0875124<br><br> <br><br>书目名称Squigonometry: The Study of Imperfect Circles读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0875124<br><br> <br><br>书目名称Squigonometry: The Study of Imperfect Circles读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0875124<br><br> <br><br>档案 发表于 2025-3-21 23:28:15
http://reply.papertrans.cn/88/8752/875124/875124_2.pngBumble 发表于 2025-3-22 02:14:48
http://reply.papertrans.cn/88/8752/875124/875124_3.png法律 发表于 2025-3-22 07:20:32
http://reply.papertrans.cn/88/8752/875124/875124_4.png婚姻生活 发表于 2025-3-22 11:27:42
Imperfection,tions, cosine and sine. Another way to view it is to note that if we try to parameterize an imperfect curve, we may get some of the story – the area . the arclength . the angle – but not all of it. Let’s try introducing some imperfection by considering the graph of the equation ., whose graph is a sinstitute 发表于 2025-3-22 16:07:04
http://reply.papertrans.cn/88/8752/875124/875124_6.pngconscience 发表于 2025-3-22 18:56:48
http://reply.papertrans.cn/88/8752/875124/875124_7.pngOMIT 发表于 2025-3-23 00:07:21
http://reply.papertrans.cn/88/8752/875124/875124_8.png陈腐思想 发表于 2025-3-23 04:38:48
Parameterizations,have seen this not happen for non-Euclidean squircles. But still we must proceed. In this chapter we will investigate how to interpret the parameters of generalized trigonometric functions and how to adapt them to access different geometric information. Although we are focused on our original defini群居动物 发表于 2025-3-23 09:32:36
Arclength parameterization,not on . being the area of the unit circle, as we have for the most part, but on . being the ratio of the circumference of a circle to its diameter. In particular, double these values of . gave the proper circumference for a .-circle in the .-metric. In Chapter ., we discovered that while the parame