橱柜 发表于 2025-3-21 19:41:12
书目名称Spectral Theory of Differential Operators影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0873873<br><br> <br><br>书目名称Spectral Theory of Differential Operators影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0873873<br><br> <br><br>书目名称Spectral Theory of Differential Operators网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0873873<br><br> <br><br>书目名称Spectral Theory of Differential Operators网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0873873<br><br> <br><br>书目名称Spectral Theory of Differential Operators被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0873873<br><br> <br><br>书目名称Spectral Theory of Differential Operators被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0873873<br><br> <br><br>书目名称Spectral Theory of Differential Operators年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0873873<br><br> <br><br>书目名称Spectral Theory of Differential Operators年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0873873<br><br> <br><br>书目名称Spectral Theory of Differential Operators读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0873873<br><br> <br><br>书目名称Spectral Theory of Differential Operators读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0873873<br><br> <br><br>招致 发表于 2025-3-21 22:31:54
https://doi.org/10.1007/978-1-4615-1755-9calculus; differential operator; function; proof; spectral theory; theorem; variable; ordinary differential委托 发表于 2025-3-22 01:31:12
Consultants Bureau, New York 1995Spongy-Bone 发表于 2025-3-22 08:36:28
Spectral Decompositions Corresponding to an Arbitrary Self-Adjoint Nonnegative Extension of the LapIn this chapter we establish exact conditions for the convergence of the spectral decompositions corresponding to an arbitrary self-adjoint nonnegative extension of the Laplace operator in the domain . (not necessarily a bounded one) of the space ..Instinctive 发表于 2025-3-22 09:01:21
Self-Adjoint Nonnegative Extensions of an Elliptic Operator of Second Order,that have been established by us in Chapter 2 for an arbitrary self-adjoint nonnegative extension of the Laplace operator remain valid also for arbitrary self-adjoint nonnegative extensions of a general elliptic operator of second order ..酷热 发表于 2025-3-22 14:39:40
Book 1995ence and summability of spectraldecompositionsabout the fundamental functions of elliptic operatorsof the secondorder. The author‘s work offers a novel method forestimation of theremainder term of a spectral function and its Rieszmeans withoutrecourse to the traditional Carleman technique andTauberian theoremapparatus.CRANK 发表于 2025-3-22 18:41:18
http://reply.papertrans.cn/88/8739/873873/873873_7.png细胞学 发表于 2025-3-23 01:00:49
Expansion in the Fundamental System of Functions of the Laplace Operator,lems for the Laplace operator; for such systems, the spectrum is a pure point spectrum, admitting of an infinite multiplicity and every where dense set of limit points for the eigenvalues — quite a realistic situation, as we shall see later.chiropractor 发表于 2025-3-23 02:42:28
http://reply.papertrans.cn/88/8739/873873/873873_9.png轻而薄 发表于 2025-3-23 05:39:56
On the Riesz Equisummability of Spectral Decompositions in the Classical and the Generalized Sense,on an arbitrary compact set . of domain .) tendency to zero of the difference of the Riesz means of order . of the spectral decompositions of this function which correspond to two arbitrary self-adjoint nonnegative extensions of the Laplace operator (in domain ., or in a domain to which . is interior).