严峻 发表于 2025-3-21 19:51:15

书目名称Singular Semi-Riemannian Geometry影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0867907<br><br>        <br><br>书目名称Singular Semi-Riemannian Geometry影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0867907<br><br>        <br><br>书目名称Singular Semi-Riemannian Geometry网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0867907<br><br>        <br><br>书目名称Singular Semi-Riemannian Geometry网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0867907<br><br>        <br><br>书目名称Singular Semi-Riemannian Geometry被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0867907<br><br>        <br><br>书目名称Singular Semi-Riemannian Geometry被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0867907<br><br>        <br><br>书目名称Singular Semi-Riemannian Geometry年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0867907<br><br>        <br><br>书目名称Singular Semi-Riemannian Geometry年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0867907<br><br>        <br><br>书目名称Singular Semi-Riemannian Geometry读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0867907<br><br>        <br><br>书目名称Singular Semi-Riemannian Geometry读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0867907<br><br>        <br><br>

艺术 发表于 2025-3-21 23:16:03

Singular Semi-Riemannian ManifoldsLet . be an .-dimensional manifold and let . be a metric tensor of type in (.) in .. Then we will call (.) a . (.). If . is of type (0, .) we will call (.) a . (.).

积习难改 发表于 2025-3-22 01:27:32

http://reply.papertrans.cn/87/8680/867907/867907_3.png

inhibit 发表于 2025-3-22 06:50:15

http://reply.papertrans.cn/87/8680/867907/867907_4.png

Incommensurate 发表于 2025-3-22 10:15:12

Singular Kähler ManifoldsIn this chapter, we will investigate the structure of Kähler manifolds with degenerate Hermitian metric tensors.

ADORN 发表于 2025-3-22 16:49:13

Preliminaries III: Linear Algebra of Quaternionic Inner Product SpacesIn this chapter, we will give a review of linear algebra of quaternionic inner product spaces parallel to Preliminaries II in Part II.

intangibility 发表于 2025-3-22 19:17:05

Singular Quaternionic Kähler ManifoldsIn this chapter, we will investigate the structure of quaternionic Kähler manifolds with degenerate quaternionic metric tensors.

notion 发表于 2025-3-22 21:41:07

Quaternionic Semi-Riemannian Submanifolds of Nondegenerate Quaternionic Kähler ManifoldsIn this chapter, we will investigate the structure of quaternionic semi-Riemannian submanifolds of nondegenerate quaternionic Kähler manifolds. In fact, we will show that such manifolds are totally geodesic.

遣返回国 发表于 2025-3-23 05:13:49

http://reply.papertrans.cn/87/8680/867907/867907_9.png

SEVER 发表于 2025-3-23 07:49:58

http://reply.papertrans.cn/87/8680/867907/867907_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Singular Semi-Riemannian Geometry; Demir N. Kupeli Book 1996 Springer Science+Business Media B.V. 1996 Riemannian geometry.Signatur.Tensor