hearken 发表于 2025-3-21 16:49:33
书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0867883<br><br> <br><br>书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0867883<br><br> <br><br>书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0867883<br><br> <br><br>书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0867883<br><br> <br><br>书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0867883<br><br> <br><br>书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0867883<br><br> <br><br>书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0867883<br><br> <br><br>书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0867883<br><br> <br><br>书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0867883<br><br> <br><br>书目名称Singular Integrals and Fourier Theory on Lipschitz Boundaries读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0867883<br><br> <br><br>就职 发表于 2025-3-21 22:54:31
http://reply.papertrans.cn/87/8679/867883/867883_2.pngthalamus 发表于 2025-3-22 01:40:28
http://reply.papertrans.cn/87/8679/867883/867883_3.png粉笔 发表于 2025-3-22 05:14:49
http://reply.papertrans.cn/87/8679/867883/867883_4.pngparallelism 发表于 2025-3-22 09:56:42
http://reply.papertrans.cn/87/8679/867883/867883_5.pngosteoclasts 发表于 2025-3-22 13:42:51
http://reply.papertrans.cn/87/8679/867883/867883_6.pngchemical-peel 发表于 2025-3-22 17:19:34
978-981-13-6502-7Springer Nature Singapore Pte Ltd. and Science Press 2019占线 发表于 2025-3-23 01:02:47
http://reply.papertrans.cn/87/8679/867883/867883_8.png财政 发表于 2025-3-23 05:13:19
http://reply.papertrans.cn/87/8679/867883/867883_9.png他姓手中拿着 发表于 2025-3-23 06:38:00
Convolution Singular Integral Operators on Lipschitz Surfaces,e question. In 1994, C. Li, A. McIntosh and S. Semmes embedded . into Clifford algebra . and considered the class of holomorphic functions on the sectors ., see [.]. They proved that if the function . belongs to ., then the singular integral operator . with the kernel . on Lipschitz surface is bounded on ..