斥责 发表于 2025-3-25 06:58:35

http://reply.papertrans.cn/87/8675/867484/867484_21.png

vector 发表于 2025-3-25 10:55:09

http://reply.papertrans.cn/87/8675/867484/867484_22.png

GRIEF 发表于 2025-3-25 12:09:42

Improving the Performance and Scalability of Differential Evolution in the mutation step to make efficient progress on non-separable problems. We present an enhancement to Differential Evolution that introduces greater diversity. The new DE approach demonstrates fast convergence towards the global optimum and is highly scalable in the decision space.

vascular 发表于 2025-3-25 15:55:29

http://reply.papertrans.cn/87/8675/867484/867484_24.png

BOGUS 发表于 2025-3-25 21:58:13

https://doi.org/10.1007/978-3-540-89694-4Alife; Scheduling; adaptive systems; algorithms; ant colonies; ant colony optimization; ants; artificial li

Temporal-Lobe 发表于 2025-3-26 00:09:39

978-3-540-89693-7Springer-Verlag Berlin Heidelberg 2008

synovitis 发表于 2025-3-26 04:30:29

Simulated Evolution and Learning978-3-540-89694-4Series ISSN 0302-9743 Series E-ISSN 1611-3349

宽敞 发表于 2025-3-26 11:41:42

http://reply.papertrans.cn/87/8675/867484/867484_28.png

dilute 发表于 2025-3-26 13:27:51

http://reply.papertrans.cn/87/8675/867484/867484_29.png

Mortal 发表于 2025-3-26 19:27:52

A New Approach to Adapting Control Parameters in Differential Evolution Algorithmue and standard deviation is employed to generate new control parameters. Performance on a set of benchmark functions indicates that our proposed method converges fast and achieves competitive results.
页: 1 2 [3] 4 5 6 7
查看完整版本: Titlebook: Simulated Evolution and Learning; 7th International Co Xiaodong Li,Michael Kirley,Yuhui Shi Conference proceedings 2008 Springer-Verlag Ber