斥责 发表于 2025-3-25 06:58:35
http://reply.papertrans.cn/87/8675/867484/867484_21.pngvector 发表于 2025-3-25 10:55:09
http://reply.papertrans.cn/87/8675/867484/867484_22.pngGRIEF 发表于 2025-3-25 12:09:42
Improving the Performance and Scalability of Differential Evolution in the mutation step to make efficient progress on non-separable problems. We present an enhancement to Differential Evolution that introduces greater diversity. The new DE approach demonstrates fast convergence towards the global optimum and is highly scalable in the decision space.vascular 发表于 2025-3-25 15:55:29
http://reply.papertrans.cn/87/8675/867484/867484_24.pngBOGUS 发表于 2025-3-25 21:58:13
https://doi.org/10.1007/978-3-540-89694-4Alife; Scheduling; adaptive systems; algorithms; ant colonies; ant colony optimization; ants; artificial liTemporal-Lobe 发表于 2025-3-26 00:09:39
978-3-540-89693-7Springer-Verlag Berlin Heidelberg 2008synovitis 发表于 2025-3-26 04:30:29
Simulated Evolution and Learning978-3-540-89694-4Series ISSN 0302-9743 Series E-ISSN 1611-3349宽敞 发表于 2025-3-26 11:41:42
http://reply.papertrans.cn/87/8675/867484/867484_28.pngdilute 发表于 2025-3-26 13:27:51
http://reply.papertrans.cn/87/8675/867484/867484_29.pngMortal 发表于 2025-3-26 19:27:52
A New Approach to Adapting Control Parameters in Differential Evolution Algorithmue and standard deviation is employed to generate new control parameters. Performance on a set of benchmark functions indicates that our proposed method converges fast and achieves competitive results.