压倒 发表于 2025-3-23 12:14:57
Qiuchi Han,Xiuxiu Hu,Pingsheng Chen,Siyu Xiaroblemstellung entsteht. “... (P)rofessional practice has at least as much to do with finding the problem as with solving the problem found...” (ebd., S.18). Es geht nicht bloß darum, ein schlecht definiertes Problem zu präzisieren, sondern eine geeignete Problemstellung zu (er)finden — die dann zumLINES 发表于 2025-3-23 17:30:31
http://reply.papertrans.cn/87/8664/866380/866380_12.png铺子 发表于 2025-3-23 19:31:14
,Anatomy Completor: A Multi-class Completion Framework for 3D Anatomy Reconstruction,e DAE to learn the . mapping more effectively and further enhances the learning of the residual mapping. On top of this, we extend the DAE to a multiclass completor by assigning a unique label to each anatomy involved. We evaluate our method using a CT dataset with whole-body segmentations. Results轻快走过 发表于 2025-3-24 00:42:17
,Fusion: Consistent Contrastive Colon Fusion, Towards Deep SLAM in Colonoscopy,er from frequent tracking failures, and estimates a global consistent 3D model; all within a single framework. We perform an extensive experimental evaluation on multiple synthetic and real colonoscopy videos, showing high-quality results and comparisons against relevant baselines.Wordlist 发表于 2025-3-24 04:03:14
http://reply.papertrans.cn/87/8664/866380/866380_15.png老巫婆 发表于 2025-3-24 08:20:13
http://reply.papertrans.cn/87/8664/866380/866380_16.png小平面 发表于 2025-3-24 11:41:53
,Unsupervised Correspondence with Combined Geometric Learning and Imaging for Radiotherapy Applicatirly to the model with direct inclusion of image features. The best performing model configuration incorporated imaging information as part of the loss function which produced more anatomically plausible correspondences. We will use the best performing model to identify corresponding anatomical pointwall-stress 发表于 2025-3-24 16:08:33
http://reply.papertrans.cn/87/8664/866380/866380_18.pngMobile 发表于 2025-3-24 22:32:11
,Geometric Learning-Based Transformer Network for Estimation of Segmentation Errors,inth structure by simulating erroneous 3D segmentation maps. Our network incorporates a convolutional encoder to compute node-centric features from the input .CT data, the Nodeformer to learn the latent graph embeddings, and a Multi-Layer Perceptron (MLP) to compute and classify the node-wise errorsGesture 发表于 2025-3-25 00:10:26
http://reply.papertrans.cn/87/8664/866380/866380_20.png