谦虚的人
发表于 2025-3-26 22:17:00
http://reply.papertrans.cn/87/8643/864290/864290_31.png
失败主义者
发表于 2025-3-27 03:03:20
http://reply.papertrans.cn/87/8643/864290/864290_32.png
Infant
发表于 2025-3-27 06:07:54
http://reply.papertrans.cn/87/8643/864290/864290_33.png
Directed
发表于 2025-3-27 12:10:35
http://reply.papertrans.cn/87/8643/864290/864290_34.png
逃避现实
发表于 2025-3-27 16:21:02
http://reply.papertrans.cn/87/8643/864290/864290_35.png
FLACK
发表于 2025-3-27 20:15:59
http://reply.papertrans.cn/87/8643/864290/864290_36.png
IRATE
发表于 2025-3-28 01:07:25
Armando Alves Neto,Douglas G. Macharet,Mario F. M. Camposor bundles yields geometric and topological properties of the underlying base manifold. Symplectic spinor fields are sections in an L^2-Hilbert space bundle over a symplectic manifold and symplectic Dirac operators, acting on symplectic spinor fields, are associated to the symplectic manifold in a v
邪恶的你
发表于 2025-3-28 03:14:37
http://reply.papertrans.cn/87/8643/864290/864290_38.png
PANG
发表于 2025-3-28 06:35:37
Michail Kontitsis,Kimon Valavanisng researchers.Includes supplementary material: .One of the basic ideas in differential geometry is that the study of analytic properties of certain differential operators acting on sections of vector bundles yields geometric and topological properties of the underlying base manifold. Symplectic spi
Concomitant
发表于 2025-3-28 12:40:39
Ryan S. Holt,Randal W. Beardng researchers.Includes supplementary material: .One of the basic ideas in differential geometry is that the study of analytic properties of certain differential operators acting on sections of vector bundles yields geometric and topological properties of the underlying base manifold. Symplectic spi