谦虚的人 发表于 2025-3-26 22:17:00
http://reply.papertrans.cn/87/8643/864290/864290_31.png失败主义者 发表于 2025-3-27 03:03:20
http://reply.papertrans.cn/87/8643/864290/864290_32.pngInfant 发表于 2025-3-27 06:07:54
http://reply.papertrans.cn/87/8643/864290/864290_33.pngDirected 发表于 2025-3-27 12:10:35
http://reply.papertrans.cn/87/8643/864290/864290_34.png逃避现实 发表于 2025-3-27 16:21:02
http://reply.papertrans.cn/87/8643/864290/864290_35.pngFLACK 发表于 2025-3-27 20:15:59
http://reply.papertrans.cn/87/8643/864290/864290_36.pngIRATE 发表于 2025-3-28 01:07:25
Armando Alves Neto,Douglas G. Macharet,Mario F. M. Camposor bundles yields geometric and topological properties of the underlying base manifold. Symplectic spinor fields are sections in an L^2-Hilbert space bundle over a symplectic manifold and symplectic Dirac operators, acting on symplectic spinor fields, are associated to the symplectic manifold in a v邪恶的你 发表于 2025-3-28 03:14:37
http://reply.papertrans.cn/87/8643/864290/864290_38.pngPANG 发表于 2025-3-28 06:35:37
Michail Kontitsis,Kimon Valavanisng researchers.Includes supplementary material: .One of the basic ideas in differential geometry is that the study of analytic properties of certain differential operators acting on sections of vector bundles yields geometric and topological properties of the underlying base manifold. Symplectic spiConcomitant 发表于 2025-3-28 12:40:39
Ryan S. Holt,Randal W. Beardng researchers.Includes supplementary material: .One of the basic ideas in differential geometry is that the study of analytic properties of certain differential operators acting on sections of vector bundles yields geometric and topological properties of the underlying base manifold. Symplectic spi