memoir 发表于 2025-3-21 18:19:33
书目名称Rigorous Time Slicing Approach to Feynman Path Integrals影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0830403<br><br> <br><br>通知 发表于 2025-3-21 21:45:43
https://doi.org/10.1007/978-4-431-56553-6Feynman path integral; Feynman propagator; Fundamental solution; Quantum mechanics; Schroedinger equatio钢笔尖 发表于 2025-3-22 04:19:31
978-4-431-56818-6Springer Japan KK 2017一回合 发表于 2025-3-22 05:03:09
http://reply.papertrans.cn/84/8305/830403/830403_4.png功多汁水 发表于 2025-3-22 09:13:14
Stationary Phase Method for Oscillatory Integrals over a Space of Large Dimensionm is given, which is independent of the dimension. This theorem enables us to discuss the time slicing approximation of Feynman path integrals when the dimension of the space goes to .. This was the central tool of our discussions in Sect. 5.4 of Chap. ..terazosin 发表于 2025-3-22 14:19:58
Feynman’s IdeaBefore going to mathematical discussions, we rapidly explain, for convenience of readers, the notion of Feynman path integrals following Feynman without mathematical rigor. Afterward, some examples are given.milligram 发表于 2025-3-22 18:27:43
http://reply.papertrans.cn/84/8305/830403/830403_7.pngintuition 发表于 2025-3-22 23:55:50
http://reply.papertrans.cn/84/8305/830403/830403_8.pnginspired 发表于 2025-3-23 02:22:32
http://reply.papertrans.cn/84/8305/830403/830403_9.png妨碍议事 发表于 2025-3-23 05:34:25
http://reply.papertrans.cn/84/8305/830403/830403_10.png