memoir
发表于 2025-3-21 18:19:33
书目名称Rigorous Time Slicing Approach to Feynman Path Integrals影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0830403<br><br> <br><br>书目名称Rigorous Time Slicing Approach to Feynman Path Integrals读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0830403<br><br> <br><br>
通知
发表于 2025-3-21 21:45:43
https://doi.org/10.1007/978-4-431-56553-6Feynman path integral; Feynman propagator; Fundamental solution; Quantum mechanics; Schroedinger equatio
钢笔尖
发表于 2025-3-22 04:19:31
978-4-431-56818-6Springer Japan KK 2017
一回合
发表于 2025-3-22 05:03:09
http://reply.papertrans.cn/84/8305/830403/830403_4.png
功多汁水
发表于 2025-3-22 09:13:14
Stationary Phase Method for Oscillatory Integrals over a Space of Large Dimensionm is given, which is independent of the dimension. This theorem enables us to discuss the time slicing approximation of Feynman path integrals when the dimension of the space goes to .. This was the central tool of our discussions in Sect. 5.4 of Chap. ..
terazosin
发表于 2025-3-22 14:19:58
Feynman’s IdeaBefore going to mathematical discussions, we rapidly explain, for convenience of readers, the notion of Feynman path integrals following Feynman without mathematical rigor. Afterward, some examples are given.
milligram
发表于 2025-3-22 18:27:43
http://reply.papertrans.cn/84/8305/830403/830403_7.png
intuition
发表于 2025-3-22 23:55:50
http://reply.papertrans.cn/84/8305/830403/830403_8.png
inspired
发表于 2025-3-23 02:22:32
http://reply.papertrans.cn/84/8305/830403/830403_9.png
妨碍议事
发表于 2025-3-23 05:34:25
http://reply.papertrans.cn/84/8305/830403/830403_10.png