会议记录 发表于 2025-3-21 16:15:15

书目名称Rigid Cohomology over Laurent Series Fields影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0830378<br><br>        <br><br>书目名称Rigid Cohomology over Laurent Series Fields影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0830378<br><br>        <br><br>书目名称Rigid Cohomology over Laurent Series Fields网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0830378<br><br>        <br><br>书目名称Rigid Cohomology over Laurent Series Fields网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0830378<br><br>        <br><br>书目名称Rigid Cohomology over Laurent Series Fields被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0830378<br><br>        <br><br>书目名称Rigid Cohomology over Laurent Series Fields被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0830378<br><br>        <br><br>书目名称Rigid Cohomology over Laurent Series Fields年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0830378<br><br>        <br><br>书目名称Rigid Cohomology over Laurent Series Fields年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0830378<br><br>        <br><br>书目名称Rigid Cohomology over Laurent Series Fields读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0830378<br><br>        <br><br>书目名称Rigid Cohomology over Laurent Series Fields读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0830378<br><br>        <br><br>

Addictive 发表于 2025-3-21 23:10:51

http://reply.papertrans.cn/84/8304/830378/830378_2.png

肉体 发表于 2025-3-22 03:57:21

http://reply.papertrans.cn/84/8304/830378/830378_3.png

钢盔 发表于 2025-3-22 04:40:54

The Overconvergent Site, Descent, and Cohomology with Compact Support,this site. This then allows us to prove that cohomological descent holds for both fppf and proper hypercovers, again by adapting the proofs in the classical case. By using de Jong’s theorem on alteration, we may then deduce finite dimensionality of . in general, extending the case of smooth schemes

慢跑鞋 发表于 2025-3-22 09:58:48

Absolute Coefficients and Arithmetic Applications,gory of coefficients ., consisting of isocrystals relative to ., and show that for . the cohomology groups . come with the extra structure of a .-module over . (a .-adic analogue of a Galois representation). By showing a comparison result with Hyodo–Kato cohomology we are then able to deduce the ana

星星 发表于 2025-3-22 15:13:15

http://reply.papertrans.cn/84/8304/830378/830378_6.png

Rct393 发表于 2025-3-22 19:32:42

http://reply.papertrans.cn/84/8304/830378/830378_7.png

inspiration 发表于 2025-3-23 00:16:14

The Overconvergent Site, Descent, and Cohomology with Compact Support,in the previous chapter. We also introduce a version of .-valued rigid cohomology with compact support, although can only prove the required finiteness results under strong assumptions on the coefficients. Under these assumption, we also deduce a version of Poincaré duality from the classical case over ..

palette 发表于 2025-3-23 02:49:10

http://reply.papertrans.cn/84/8304/830378/830378_9.png

transient-pain 发表于 2025-3-23 07:59:54

Finiteness with Coefficients via a Local Monodromy Theorem, established, such as excision, a Gysin isomorphism&c. have been established, the eventual proof of finite dimensionality for smooth varieties proceeds in the usual way. Base change is proved simultaneously, and this then allows us to deduce results such as a Künneth formula from their counterparts over ..
页: [1] 2 3 4
查看完整版本: Titlebook: Rigid Cohomology over Laurent Series Fields; Christopher Lazda,Ambrus Pál Book 2016 Springer International Publishing Switzerland 2016 p-a