季雨 发表于 2025-3-23 10:26:15

http://reply.papertrans.cn/84/8304/830378/830378_11.png

Freeze 发表于 2025-3-23 17:17:15

1572-5553 Rigid Cohomology over Laurent Series Fields. will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background mate978-3-319-80926-7978-3-319-30951-4Series ISSN 1572-5553 Series E-ISSN 2192-2950

平常 发表于 2025-3-23 19:16:12

Book 2016ep towards a more general theory of .p.-adic cohomology over non-perfect ground fields.. .Rigid Cohomology over Laurent Series Fields. will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background mate

Lethargic 发表于 2025-3-23 23:18:02

978-3-319-80926-7Springer International Publishing Switzerland 2016

可能性 发表于 2025-3-24 03:03:34

Rigid Cohomology over Laurent Series Fields978-3-319-30951-4Series ISSN 1572-5553 Series E-ISSN 2192-2950

nauseate 发表于 2025-3-24 09:03:47

Christopher Lazda,Ambrus PálPresents a new cohomology theory for varieties over local function fields, taking values in the category of overconvergent (f,?)-modules.Introduces coefficient objects for this newly developed cohomol

neurologist 发表于 2025-3-24 11:29:01

http://reply.papertrans.cn/84/8304/830378/830378_17.png

BRUNT 发表于 2025-3-24 18:27:09

http://reply.papertrans.cn/84/8304/830378/830378_18.png

减至最低 发表于 2025-3-24 21:32:39

http://reply.papertrans.cn/84/8304/830378/830378_19.png

Evacuate 发表于 2025-3-25 00:00:09

http://reply.papertrans.cn/84/8304/830378/830378_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Rigid Cohomology over Laurent Series Fields; Christopher Lazda,Ambrus Pál Book 2016 Springer International Publishing Switzerland 2016 p-a