要旨 发表于 2025-3-21 18:25:10

书目名称Ricci Flow for Shape Analysis and Surface Registration影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0830185<br><br>        <br><br>书目名称Ricci Flow for Shape Analysis and Surface Registration影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0830185<br><br>        <br><br>书目名称Ricci Flow for Shape Analysis and Surface Registration网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0830185<br><br>        <br><br>书目名称Ricci Flow for Shape Analysis and Surface Registration网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0830185<br><br>        <br><br>书目名称Ricci Flow for Shape Analysis and Surface Registration被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0830185<br><br>        <br><br>书目名称Ricci Flow for Shape Analysis and Surface Registration被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0830185<br><br>        <br><br>书目名称Ricci Flow for Shape Analysis and Surface Registration年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0830185<br><br>        <br><br>书目名称Ricci Flow for Shape Analysis and Surface Registration年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0830185<br><br>        <br><br>书目名称Ricci Flow for Shape Analysis and Surface Registration读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0830185<br><br>        <br><br>书目名称Ricci Flow for Shape Analysis and Surface Registration读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0830185<br><br>        <br><br>

口音在加重 发表于 2025-3-21 23:02:33

Riemann Surface,Riemann surface theory studies the invariants under conformal transformation group. This chapter briefly introduces the Riemann surface theory , including quasi-conformal mapping , Teichmüller space , and surface harmonic maps . Finally, the Teichmüller theory of harmonic maps is covered.

Aboveboard 发表于 2025-3-22 02:09:29

http://reply.papertrans.cn/84/8302/830185/830185_3.png

完成才会征服 发表于 2025-3-22 06:56:57

http://reply.papertrans.cn/84/8302/830185/830185_4.png

fatty-acids 发表于 2025-3-22 08:59:57

SpringerBriefs in Mathematicshttp://image.papertrans.cn/r/image/830185.jpg

幸福愉悦感 发表于 2025-3-22 16:07:21

https://doi.org/10.1007/978-1-4614-8781-4Diffeomorphism; Poincaré’s Conjecture; QuasiConformal; Ricci Flow; Surface Registration; Uniformization

原告 发表于 2025-3-22 19:50:34

Introduction,rphisms, isometries, conformal transformations, and rigid motions) and group actions on shape spaces. In order to perform surface registration and shape analysis in the shape space and the mapping space, Ricci flow is introduced, which leads to the celebrated uniformization theorem.

optic-nerve 发表于 2025-3-23 01:10:46

978-1-4614-8780-7Wei Zeng, Xianfeng David Gu 2013

lymphedema 发表于 2025-3-23 04:01:37

Ricci Flow for Shape Analysis and Surface Registration978-1-4614-8781-4Series ISSN 2191-8198 Series E-ISSN 2191-8201

审问,审讯 发表于 2025-3-23 06:30:07

http://reply.papertrans.cn/84/8302/830185/830185_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Ricci Flow for Shape Analysis and Surface Registration; Theories, Algorithms Wei Zeng,Xianfeng David Gu Book 2013 Wei Zeng, Xianfeng David