Auditory-Nerve 发表于 2025-3-21 18:56:52
书目名称Regularity and Substructures of Hom影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0825562<br><br> <br><br>书目名称Regularity and Substructures of Hom影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0825562<br><br> <br><br>书目名称Regularity and Substructures of Hom网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0825562<br><br> <br><br>书目名称Regularity and Substructures of Hom网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0825562<br><br> <br><br>书目名称Regularity and Substructures of Hom被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0825562<br><br> <br><br>书目名称Regularity and Substructures of Hom被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0825562<br><br> <br><br>书目名称Regularity and Substructures of Hom年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0825562<br><br> <br><br>书目名称Regularity and Substructures of Hom年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0825562<br><br> <br><br>书目名称Regularity and Substructures of Hom读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0825562<br><br> <br><br>书目名称Regularity and Substructures of Hom读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0825562<br><br> <br><br>壕沟 发表于 2025-3-21 21:16:26
https://doi.org/10.1007/978-3-7643-9990-0Abelian group; algebra; domain decomposition; homomorphism; module category; regular homomorphismOriginal 发表于 2025-3-22 01:42:46
978-3-7643-9989-4Birkhäuser Basel 2009bronchiole 发表于 2025-3-22 06:38:00
Regularity and Substructures of Hom978-3-7643-9990-0Series ISSN 1660-8046 Series E-ISSN 1660-8054ATP861 发表于 2025-3-22 11:26:48
http://reply.papertrans.cn/83/8256/825562/825562_5.png极大痛苦 发表于 2025-3-22 13:30:30
Regularity in Modules, = R where R acts by left multiplication on R and we obtain the S-R-bimodule Hom.(R, M) where S := End(M.). Of course, M also is an S-R-bimodule. The first basic observation that allows us to transfer our previous more general results to the module M is the routine fact that . is a bimodule isomorphism.Rinne-Test 发表于 2025-3-22 17:14:35
Regular Homomorphisms,Let . be a ring with 1 ∈ . and denote by Mod-. the category of all unitary right .-modules. For arbitrary . ∈ Mod ., let . Then . is an .-bimodule.悠然 发表于 2025-3-23 01:13:00
Indecomposable Modules,A module . is . (or simply .) if and only if 0 and . are the only direct summands of . This means that 0 and 1 are the only idempotents in End(M.). We now study the situation that Reg(.) ≠ 0 and one of the modules . or . is indecomposable. It turns out that much can be said under assumptions weaker than Reg(.) ≠ 0.易受刺激 发表于 2025-3-23 05:03:39
http://reply.papertrans.cn/83/8256/825562/825562_9.pngDIS 发表于 2025-3-23 08:11:55
http://reply.papertrans.cn/83/8256/825562/825562_10.png