天真无邪 发表于 2025-3-21 19:41:45
书目名称Ramanujan’s Notebooks影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0821013<br><br> <br><br>书目名称Ramanujan’s Notebooks影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0821013<br><br> <br><br>书目名称Ramanujan’s Notebooks网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0821013<br><br> <br><br>书目名称Ramanujan’s Notebooks网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0821013<br><br> <br><br>书目名称Ramanujan’s Notebooks被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0821013<br><br> <br><br>书目名称Ramanujan’s Notebooks被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0821013<br><br> <br><br>书目名称Ramanujan’s Notebooks年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0821013<br><br> <br><br>书目名称Ramanujan’s Notebooks年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0821013<br><br> <br><br>书目名称Ramanujan’s Notebooks读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0821013<br><br> <br><br>书目名称Ramanujan’s Notebooks读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0821013<br><br> <br><br>斥责 发表于 2025-3-21 20:39:47
http://reply.papertrans.cn/83/8211/821013/821013_2.pngGUILE 发表于 2025-3-22 03:19:24
http://image.papertrans.cn/r/image/821013.jpg背带 发表于 2025-3-22 08:19:50
https://doi.org/10.1007/978-1-4612-1088-7calculus; exponential function; transformationAnal-Canal 发表于 2025-3-22 12:47:14
http://reply.papertrans.cn/83/8211/821013/821013_5.pngPanacea 发表于 2025-3-22 15:23:48
http://reply.papertrans.cn/83/8211/821013/821013_6.pngFoam-Cells 发表于 2025-3-22 18:15:33
Magic Squares,r constructing certain rectangular arrays of natural numbers are given. Most of Ramanujan’s attention is devoted to constructing magic squares. A magic square is a square array of (usually distinct) natural numbers so that the sum of the numbers in each row, column, or diagonal is the same. In some售穴 发表于 2025-3-22 21:49:41
Combinatorial Analysis and Series Inversions,s. Another primary theme in Chapter 3 revolves around series expansions of various types. However, the deepest and most interesting result in Chapter 3 is Entry 10, which separates the two main themes but which has some connections with the former. Entry 10 offers a highly general and potentially ve性学院 发表于 2025-3-23 03:01:34
Iterates of the Exponential Function and an Ingenious Formal Technique,ein the Bell numbers, single-variable Bell polynomials, and related topics are studied. Recall that the Bell numbers .(.), 0 ≤ . ≤ ∞, may be defined by They were first thoroughly studied in print by Bell , approximately 25–30 years after Ramanujan had derived several of their properties in thMotilin 发表于 2025-3-23 07:21:04
Eulerian Polynomials and Numbers, Bernoulli Numbers, and the Riemann Zeta-Function,rity pertain to Bernoulli numbers, Euler numbers, Eulerian polynomials and numbers, and the Riemann zeta-function. As is to be expected, most of these results are not new. The geneses of Ramanujan’s first published paper (on Bernoulli numbers) and fourth published paper (on sums connected wi