到凝乳
发表于 2025-3-21 16:46:54
书目名称Ramanujan‘s Lost Notebook影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0821006<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0821006<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0821006<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0821006<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0821006<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0821006<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0821006<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0821006<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0821006<br><br> <br><br>书目名称Ramanujan‘s Lost Notebook读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0821006<br><br> <br><br>
LIMIT
发表于 2025-3-21 23:21:16
http://reply.papertrans.cn/83/8211/821006/821006_2.png
ACME
发表于 2025-3-22 02:03:01
http://reply.papertrans.cn/83/8211/821006/821006_3.png
可耕种
发表于 2025-3-22 04:48:20
http://reply.papertrans.cn/83/8211/821006/821006_4.png
我正派
发表于 2025-3-22 11:32:59
Ranks and Cranks, Part III,in prime importance. In this chapter, we examine ten tables of congruences satisfied by the coefficients of the generating function for cranks. In contrast to the well-known congruences satisfied by the partition function .(.), each of these tables has only a finite set of values, which Ramanujan re
剥皮
发表于 2025-3-22 16:36:16
http://reply.papertrans.cn/83/8211/821006/821006_6.png
MEET
发表于 2025-3-22 17:13:24
Theorems about the Partition Function on Pages 189 and 182,) and .(7.+5)≡0 (mod 7). One of Ramanujan’s proofs hinges upon the beautiful identity . which is given on page 189. We provide a more detailed rendition of the proof given by Ramanujan, as well as a similarly beautiful identity yielding the congruence .(7.+5)≡0 (mod 7). On both pages, Ramanujan exam
Friction
发表于 2025-3-23 01:09:29
http://reply.papertrans.cn/83/8211/821006/821006_8.png
Cholagogue
发表于 2025-3-23 03:54:58
Highly Composite Numbers,teger .<., it happens that .(.)<.(.), where .(.) is the number of divisors of .. In the notes of Ramanujan’s ., the editors relate, “The paper, long as it is, is not complete.” Fortunately, the large remaining portion of the paper was not discarded. It was first set into print by Jean-Louis Nicolas
medium
发表于 2025-3-23 08:37:31
http://reply.papertrans.cn/83/8211/821006/821006_10.png