supplementary 发表于 2025-3-21 17:00:04

书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0781649<br><br>        <br><br>书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0781649<br><br>        <br><br>书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0781649<br><br>        <br><br>书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0781649<br><br>        <br><br>书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0781649<br><br>        <br><br>书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0781649<br><br>        <br><br>书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0781649<br><br>        <br><br>书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0781649<br><br>        <br><br>书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0781649<br><br>        <br><br>书目名称Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0781649<br><br>        <br><br>

SOBER 发表于 2025-3-21 23:24:12

http://reply.papertrans.cn/79/7817/781649/781649_2.png

受辱 发表于 2025-3-22 01:45:01

http://reply.papertrans.cn/79/7817/781649/781649_3.png

泛滥 发表于 2025-3-22 06:54:58

http://reply.papertrans.cn/79/7817/781649/781649_4.png

evaculate 发表于 2025-3-22 12:44:09

The ,-Functional Calculus,The H.-functional calculus was originally introduced in by Alan McIntosh. His approach was generalized to quaternionic sectorial operators that are injective and have dense range in . Moreover, under the above assumptions, in , it is also treated the case of n-tuples of noncommuting operators.

无动于衷 发表于 2025-3-22 13:57:33

http://reply.papertrans.cn/79/7817/781649/781649_6.png

conspicuous 发表于 2025-3-22 19:05:38

http://reply.papertrans.cn/79/7817/781649/781649_7.png

Debility 发表于 2025-3-22 22:08:29

Historical notes and References,Several years ago, motivated by the paper of G. Birkho_ and J. von Neumann and the book , one of the authors and I. Sabadini started to look for an appropriate notion of spectrum for quaternionic linear operators.

细查 发表于 2025-3-23 05:24:02

Appendix: Principles of functional Analysis,The principles of functional analysis do not depend on the quaternionic structure, so with minor changes these can be proved also in quaternionic functional analysis. For the convenience of the reader, we collect such results in this appendix.

Foment 发表于 2025-3-23 06:13:28

Fabrizio Colombo,Jonathan GantnerContains a new theory for evolution operators.Allows defining new classes of fractional diffusion and evolution problems.Inspires to explore new research directions
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes; Fabrizio Colombo,Jonathan Gantner Book 2019 Springer