Encomium 发表于 2025-3-21 17:03:53
书目名称Quadratic Diophantine Equations影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0780045<br><br> <br><br>书目名称Quadratic Diophantine Equations影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0780045<br><br> <br><br>书目名称Quadratic Diophantine Equations网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0780045<br><br> <br><br>书目名称Quadratic Diophantine Equations网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0780045<br><br> <br><br>书目名称Quadratic Diophantine Equations被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0780045<br><br> <br><br>书目名称Quadratic Diophantine Equations被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0780045<br><br> <br><br>书目名称Quadratic Diophantine Equations年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0780045<br><br> <br><br>书目名称Quadratic Diophantine Equations年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0780045<br><br> <br><br>书目名称Quadratic Diophantine Equations读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0780045<br><br> <br><br>书目名称Quadratic Diophantine Equations读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0780045<br><br> <br><br>原告 发表于 2025-3-21 22:22:07
http://reply.papertrans.cn/79/7801/780045/780045_2.png他去就结束 发表于 2025-3-22 04:00:32
1389-2177 esented will shed light on important open problems.Includes .This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases碎片 发表于 2025-3-22 05:36:30
Textbook 2015hniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems and applications. Moreover, the expositchampaign 发表于 2025-3-22 12:28:34
Why Quadratic Diophantine Equations?,In order to motivate the study of quadratic type equations, in this chapter we present several problems from various mathematical disciplines leading to such equations. The diversity of the arguments to follow underlines the importance of this subject.鸣叫 发表于 2025-3-22 15:44:33
http://reply.papertrans.cn/79/7801/780045/780045_6.pngDebark 发表于 2025-3-22 19:11:50
,General Pell’s Equation,This chapter gives the general theory and useful algorithms to find positive integer solutions (., .) to general Pell’s equation (4.1.1), where . is a nonsquare positive integer, and . a nonzero integer.Cardioversion 发表于 2025-3-23 00:29:44
,Equations Reducible to Pell’s Type Equations,An interesting problem concerning the Pell’s equation . is to study when the second component of a solution (., .) is a perfect square.thrombus 发表于 2025-3-23 04:02:21
Diophantine Representations of Some Sequences,In 1900, David Hilbert asked for an algorithm to decide whether a given Diophantine equation is solvable or not and put this problem tenth in his famous list of 23.REIGN 发表于 2025-3-23 05:38:07
Other Applications,In and it is proven that there are infinitely many positive integers . such that 2. + 1 and 3. + 1 are both perfect squares. The proof relies on the theory of general Pell’s equations.