Rankle 发表于 2025-3-23 09:49:24
http://reply.papertrans.cn/75/7411/741002/741002_11.pngsorbitol 发表于 2025-3-23 14:33:19
http://reply.papertrans.cn/75/7411/741002/741002_12.png性冷淡 发表于 2025-3-23 20:35:38
Improving Nevergrad’s Algorithm Selection Wizard NGOpt Through Automated Algorithm Configurationhe problem and available computational resources, such as number and type of decision variables, maximal number of evaluations, possibility to parallelize evaluations, etc. State-of-the-art algorithm selection wizards are complex and difficult to improve. We propose in this work the use of automated出价 发表于 2025-3-24 00:35:21
http://reply.papertrans.cn/75/7411/741002/741002_14.png较早 发表于 2025-3-24 03:14:26
Per-run Algorithm Selection with Warm-Starting Using Trajectory-Based Featuress that are expected to perform well for the particular setting. The selection is classically done offline, using openly available information about the problem instance or features that are extracted from the instance during a dedicated feature extraction step. This ignores valuable information thatantenna 发表于 2025-3-24 06:50:29
A Systematic Approach to Analyze the Computational Cost of Robustness in Model-Assisted Robust Optimizationnal optimization problem into a robust counterpart, e.g., by taking an average of the function values over different perturbations to a specific input. Solving the robust counterpart instead of the original problem can significantly increase the associated computational cost, which is often overlookforager 发表于 2025-3-24 14:08:26
Adaptive Function Value Warping for Surrogate Model Assisted Evolutionary Optimizationms. Most surrogate modelling techniques in use with evolutionary algorithms today do not preserve the desirable invariance to order-preserving transformations of objective function values of the underlying algorithms. We propose adaptive function value warping as a tool aiming to reduce the sensitivgalley 发表于 2025-3-24 16:18:08
http://reply.papertrans.cn/75/7411/741002/741002_18.pngFADE 发表于 2025-3-24 20:40:41
Finding Knees in Bayesian Multi-objective Optimizationber of objectives, extracting the Pareto front might not be easy nor cheap. On the other hand, the . is not always interested in the entire Pareto front, and might prefer a solution where there is a desirable trade-off between different objectives. An example of an attractive solution is the knee poMemorial 发表于 2025-3-25 02:36:36
Risto Trajanov,Ana Nikolikj,Gjorgjina Cenikj,Fabien Teytaud,Mathurin Videau,Olivier Teytaud,Tome Eftimov,Manuel López-Ibáñez,Carola Doerreränderte Kundenwünsche einstellen. Letztere wiederum sind einerseits von diesen Prozessen durch Ausdünnung der kostenträchtigen Filialnetze betroffen, müssen ihr Geld per Online-Banking selbst verwalten und ein ganz neues Vertrauensverhältnis zu ihrem Finanzdienstleister aufbauen, der nun neben ihr