Parabola 发表于 2025-3-25 06:48:52

Orthogonal Latin Squares Based on Groups978-3-319-94430-2Series ISSN 1389-2177 Series E-ISSN 2197-795X

podiatrist 发表于 2025-3-25 09:48:25

http://reply.papertrans.cn/71/7048/704704/704704_22.png

休闲 发表于 2025-3-25 14:52:10

Latin Squares Based on Groupsality from a purely algebraic point of view, using difference matrices, complete mappings, and orthomorphisms. The nets, affine planes, projective planes, and transversal designs constructed in this way are characterized by the action of the group on these designs. We introduce these concepts in this chapter.

蕨类 发表于 2025-3-25 17:59:42

http://reply.papertrans.cn/71/7048/704704/704704_24.png

GOAD 发表于 2025-3-25 20:13:49

http://reply.papertrans.cn/71/7048/704704/704704_25.png

作呕 发表于 2025-3-26 02:07:20

The Groups ,(,, ,), ,(,, ,), ,(,, ,), and ,(,, ,)onal case, each of these groups is isomorphic to the nonabelian group of order 6, a group with a nontrivial, cyclic Sylow 2-subgroup, which therefore is not admissible by a result of Hall and Paige. In this chapter we will also prove the admissibility of GL(., .), SL(2, .), PSL(2, .), and PGL(., .) when . is odd.

Tracheotomy 发表于 2025-3-26 05:39:49

http://reply.papertrans.cn/71/7048/704704/704704_27.png

Concomitant 发表于 2025-3-26 10:34:17

http://reply.papertrans.cn/71/7048/704704/704704_28.png

发表于 2025-3-26 13:40:43

http://reply.papertrans.cn/71/7048/704704/704704_29.png

miscreant 发表于 2025-3-26 19:25:30

http://reply.papertrans.cn/71/7048/704704/704704_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Orthogonal Latin Squares Based on Groups; Anthony B. Evans Book 2018 Springer International Publishing AG, part of Springer Nature 2018 Or