Parabola
发表于 2025-3-25 06:48:52
Orthogonal Latin Squares Based on Groups978-3-319-94430-2Series ISSN 1389-2177 Series E-ISSN 2197-795X
podiatrist
发表于 2025-3-25 09:48:25
http://reply.papertrans.cn/71/7048/704704/704704_22.png
休闲
发表于 2025-3-25 14:52:10
Latin Squares Based on Groupsality from a purely algebraic point of view, using difference matrices, complete mappings, and orthomorphisms. The nets, affine planes, projective planes, and transversal designs constructed in this way are characterized by the action of the group on these designs. We introduce these concepts in this chapter.
蕨类
发表于 2025-3-25 17:59:42
http://reply.papertrans.cn/71/7048/704704/704704_24.png
GOAD
发表于 2025-3-25 20:13:49
http://reply.papertrans.cn/71/7048/704704/704704_25.png
作呕
发表于 2025-3-26 02:07:20
The Groups ,(,, ,), ,(,, ,), ,(,, ,), and ,(,, ,)onal case, each of these groups is isomorphic to the nonabelian group of order 6, a group with a nontrivial, cyclic Sylow 2-subgroup, which therefore is not admissible by a result of Hall and Paige. In this chapter we will also prove the admissibility of GL(., .), SL(2, .), PSL(2, .), and PGL(., .) when . is odd.
Tracheotomy
发表于 2025-3-26 05:39:49
http://reply.papertrans.cn/71/7048/704704/704704_27.png
Concomitant
发表于 2025-3-26 10:34:17
http://reply.papertrans.cn/71/7048/704704/704704_28.png
假
发表于 2025-3-26 13:40:43
http://reply.papertrans.cn/71/7048/704704/704704_29.png
miscreant
发表于 2025-3-26 19:25:30
http://reply.papertrans.cn/71/7048/704704/704704_30.png