延期 发表于 2025-3-23 12:43:54

http://reply.papertrans.cn/71/7030/702942/702942_11.png

豪华 发表于 2025-3-23 14:00:53

http://reply.papertrans.cn/71/7030/702942/702942_12.png

变形 发表于 2025-3-23 18:42:20

http://reply.papertrans.cn/71/7030/702942/702942_13.png

remission 发表于 2025-3-24 01:26:25

Monge-Kantorovich Distance,This Chapter begins with the notion of disintegration of measures and states the disintegration theorem fully proved later in Chap. .. The Monge-Kantorovich or Wasserstein distance is introduced and its properties proved using disintegration.

记忆法 发表于 2025-3-24 03:00:21

http://reply.papertrans.cn/71/7030/702942/702942_15.png

Lyme-disease 发表于 2025-3-24 10:19:03

Kantorovich Dual Problem,The dual Kantorovich problem is introduced and it is proved, under aproppiate assumptions on the cost function, that this problem is equivalent to the Kantorovich and the Monge problems introduced in Chap. .. It is also proved the invertibility of optimal maps for the Monge problem.

平息 发表于 2025-3-24 13:08:00

Cyclical Monotonicity,In this chapter the notion of cyclical monotonicity of multi-valued maps is analyzed.

analogous 发表于 2025-3-24 15:02:09

http://reply.papertrans.cn/71/7030/702942/702942_18.png

令人发腻 发表于 2025-3-24 20:51:26

,Brenier’s Polar Factorization Theorem,A detailed proof of Brenier’s theorem is given.

bibliophile 发表于 2025-3-24 23:45:34

http://reply.papertrans.cn/71/7030/702942/702942_20.png
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Optimal Transport and Applications to Geometric Optics; Cristian E. Gutiérrez Book 2023 The Editor(s) (if applicable) and The Author(s), u