Wilder 发表于 2025-3-21 19:59:30
书目名称Operator Algebras and Quantum Statistical Mechanics影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0702304<br><br> <br><br>书目名称Operator Algebras and Quantum Statistical Mechanics影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0702304<br><br> <br><br>书目名称Operator Algebras and Quantum Statistical Mechanics网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0702304<br><br> <br><br>书目名称Operator Algebras and Quantum Statistical Mechanics网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0702304<br><br> <br><br>书目名称Operator Algebras and Quantum Statistical Mechanics被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0702304<br><br> <br><br>书目名称Operator Algebras and Quantum Statistical Mechanics被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0702304<br><br> <br><br>书目名称Operator Algebras and Quantum Statistical Mechanics年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0702304<br><br> <br><br>书目名称Operator Algebras and Quantum Statistical Mechanics年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0702304<br><br> <br><br>书目名称Operator Algebras and Quantum Statistical Mechanics读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0702304<br><br> <br><br>书目名称Operator Algebras and Quantum Statistical Mechanics读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0702304<br><br> <br><br>Inflamed 发表于 2025-3-21 23:17:23
https://doi.org/10.1007/978-3-662-03444-6Algebra; Algebras; Bose-Einstein condensation; Operator; Operatoralgebra; Physik; Quantenmechanik; Quantens内部 发表于 2025-3-22 01:01:54
http://reply.papertrans.cn/71/7024/702304/702304_3.pngmacular-edema 发表于 2025-3-22 08:19:06
http://reply.papertrans.cn/71/7024/702304/702304_4.png蘑菇 发表于 2025-3-22 09:13:22
http://reply.papertrans.cn/71/7024/702304/702304_5.png中国纪念碑 发表于 2025-3-22 14:11:34
http://reply.papertrans.cn/71/7024/702304/702304_6.png淘气 发表于 2025-3-22 18:03:55
Operator Algebras and Quantum Statistical Mechanics978-3-662-03444-6Series ISSN 1864-5879 Series E-ISSN 1864-5887Coordinate 发表于 2025-3-22 22:57:21
Introductionze the structural properties of the equilibrium states of quantum systems consisting of a large number of particles. In Chapter 1 we argued that this leads to the study of states of infinite-particle systems as an in it ial approximation. There are two approaches to this study which are to a large eGLIB 发表于 2025-3-23 03:05:05
Continuous Quantum Systems. Ihysical. One begins with the Hilbert space of vector states of the particles and subsequently introduces algebras of operators corresponding to certain particle observables. The second approach is more abstract and consists of postulating certain structural features of a .*-algebra of observables anSynchronism 发表于 2025-3-23 09:21:19
KMS-Statesibrium states. Now we discontinue this specific analysis and describe instead various general characterizations of equilibrium phenomena. Principally, we investigate the Kubo—Martin—Schwinger, or KMS, condition briefly outlined in the Introduction and used in the calculation of the Gibbs states of t