粘上 发表于 2025-3-21 19:40:42

书目名称Natural Language Processing and Chinese Computing影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0669626<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0669626<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0669626<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0669626<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0669626<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0669626<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0669626<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0669626<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0669626<br><br>        <br><br>书目名称Natural Language Processing and Chinese Computing读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0669626<br><br>        <br><br>

CHARM 发表于 2025-3-21 22:03:35

http://reply.papertrans.cn/67/6697/669626/669626_2.png

洞察力 发表于 2025-3-22 02:34:07

Contrastive Learning-Based Sequential Recommendation Modeltems in sequential recommendation. The proposed contrastive learning framework effectively captures intra-sequence item transition patterns and inter-sequence dependencies among items. Empirical evaluations on real-world datasets show that our model significantly outperforms advanced baseline models

Dislocation 发表于 2025-3-22 06:29:08

http://reply.papertrans.cn/67/6697/669626/669626_4.png

tariff 发表于 2025-3-22 10:25:05

Enhancing Complex Causality Extraction via Improved Subtask Interaction and Knowledge Fusionween the two ECE subtasks. Besides, we design a knowledge fusion mechanism to fuse knowledge in the two modalities. Furthermore, we employ separate decoders for each subtask to facilitate complex causality extraction. Experiments on three benchmark datasets demonstrate that our method achieves state

单纯 发表于 2025-3-22 13:44:59

Mathematical Reasoning via Multi-step Self Questioning and Answering for Small Language Modelslti-step reason in a self questioning and answering way and answer each sub-question in a single step iteratively. Experiments on current mathematical reasoning tasks demonstrate the effectiveness of the proposed approach.

贞洁 发表于 2025-3-22 19:08:58

High-Quality Distractors Generation for Human Exam Based on Reinforcement Learning from Preference Fment learning, we build and train a reward model to evaluate the quality of individual distractors. Combining the reward model with a diversity evaluation metric, we design an objective function and further train the fine-tuned model using reinforcement learning. Experiments show that the DGRL, afte

disparage 发表于 2025-3-23 01:10:23

http://reply.papertrans.cn/67/6697/669626/669626_8.png

使显得不重要 发表于 2025-3-23 03:38:37

MANet: A Multiview Attention Network for Automatic ICD Codingre integrated to effectively fuse these multiview features, generating more informative and discriminative representations. Extensive experiments conducted on the popular MIMIC-III and MIMIC-IV-ICD9 datasets demonstrate the superiority of our proposed MANet over state-of-the-art methods. On MIMIC-II

去才蔑视 发表于 2025-3-23 07:02:40

http://reply.papertrans.cn/67/6697/669626/669626_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th