笔记 发表于 2025-3-21 17:32:51

书目名称Numerical Semigroups影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0669168<br><br>        <br><br>书目名称Numerical Semigroups影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0669168<br><br>        <br><br>书目名称Numerical Semigroups网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0669168<br><br>        <br><br>书目名称Numerical Semigroups网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0669168<br><br>        <br><br>书目名称Numerical Semigroups被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0669168<br><br>        <br><br>书目名称Numerical Semigroups被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0669168<br><br>        <br><br>书目名称Numerical Semigroups年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0669168<br><br>        <br><br>书目名称Numerical Semigroups年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0669168<br><br>        <br><br>书目名称Numerical Semigroups读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0669168<br><br>        <br><br>书目名称Numerical Semigroups读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0669168<br><br>        <br><br>

chemoprevention 发表于 2025-3-21 22:10:01

Numerical semigroups with maximal embedding dimension,they have become specially renowned due to the existing applications to commutative algebra via their associated semigroup ring (see for instance ). They are a source of examples of commutative rings with some maximal properties. As we mentioned in the introduction of Chapter

间接 发表于 2025-3-22 01:38:17

Irreducible numerical semigroups, these semigroups is due mainly to Kunz, who in his manuscript proves that a onedimensional analytically irreducible Noetherian local ring is Gorenstein if and only if its value semigroup is symmetric. Symmetric numerical semigroups always have odd Frobenius number. The translation of this conc

提升 发表于 2025-3-22 07:12:35

http://reply.papertrans.cn/67/6692/669168/669168_4.png

把…比做 发表于 2025-3-22 10:02:07

Presentations of a numerical semigroup,e fact that every finitely generated (commutative) monoid is finitely presented. Rédei’s proof is long and elaborated. Many other authors have given alternative and much simpler proofs than his (see for instance ). Since numerical semigroups are cancellative monoids, a different appr

NOMAD 发表于 2025-3-22 13:23:19

http://reply.papertrans.cn/67/6692/669168/669168_6.png

Glossy 发表于 2025-3-22 20:16:27

Numerical semigroups with embedding dimension three,h the help of Proposition 1.17 and what we know about embedding dimension two numerical semigroups, a formula for the Frobenius number and the genus of a symmetric numerical semigroup with embedding dimension three can easily be found. As for the pseudo-symmetric case, an expression for the Frobeniu

probate 发表于 2025-3-22 21:50:51

http://reply.papertrans.cn/67/6692/669168/669168_8.png

弯曲道理 发表于 2025-3-23 01:38:16

Book 2009and Sylvester at the end of the 19th century. This is how for instance the Frobenius problem arose, concerned with ?nding a formula depending on n ,...,n for the largest integer not belonging to hn ,...,n i (see 1 e 1 e for a nice state of the art on this problem).

松软无力 发表于 2025-3-23 06:33:06

1389-2177 ber theory, coding theory, algebraic geometry, and others.ThLet N be the set of nonnegative integers. A numerical semigroup is a nonempty subset S of N that is closed under addition, contains the zero element, and whose complement in N is ?nite. If n ,...,n are positive integers with gcd{n ,...,n }
页: [1] 2 3 4 5
查看完整版本: Titlebook: Numerical Semigroups; J.C. Rosales,P. A. García-Sánchez Book 2009 Springer Science+Business Media, LLC 2009 Additive Semigroups.Embedding