MAPLE
发表于 2025-3-23 11:25:53
http://reply.papertrans.cn/67/6692/669168/669168_11.png
绅士
发表于 2025-3-23 17:55:02
http://reply.papertrans.cn/67/6692/669168/669168_12.png
Diaphragm
发表于 2025-3-23 21:15:47
http://reply.papertrans.cn/67/6692/669168/669168_13.png
moratorium
发表于 2025-3-24 00:36:25
http://reply.papertrans.cn/67/6692/669168/669168_14.png
拥挤前
发表于 2025-3-24 04:09:06
http://reply.papertrans.cn/67/6692/669168/669168_15.png
Mercurial
发表于 2025-3-24 07:54:37
http://reply.papertrans.cn/67/6692/669168/669168_16.png
TOXIC
发表于 2025-3-24 14:10:56
Numerical semigroups with embedding dimension three,s number of a numerical semigroup of embedding dimension three can be given in terms of the generators (and consequently also a formula for the genus in view of Corollary 3.5). This formula is presented by the authors in .
卜闻
发表于 2025-3-24 17:33:58
http://reply.papertrans.cn/67/6692/669168/669168_18.png
小步舞
发表于 2025-3-24 22:04:13
http://reply.papertrans.cn/67/6692/669168/669168_19.png
古文字学
发表于 2025-3-24 23:37:11
Proportionally modular numerical semigroups,roup. In that manuscript it is shown that the genus of these semigroups can be obtained from the coefficients of the inequality. However, to date we still do not know formulas for the Frobenius number or the multiplicity of the semigroup of solutions of a modular Diophantine inequality.