MAPLE 发表于 2025-3-23 11:25:53
http://reply.papertrans.cn/67/6692/669168/669168_11.png绅士 发表于 2025-3-23 17:55:02
http://reply.papertrans.cn/67/6692/669168/669168_12.pngDiaphragm 发表于 2025-3-23 21:15:47
http://reply.papertrans.cn/67/6692/669168/669168_13.pngmoratorium 发表于 2025-3-24 00:36:25
http://reply.papertrans.cn/67/6692/669168/669168_14.png拥挤前 发表于 2025-3-24 04:09:06
http://reply.papertrans.cn/67/6692/669168/669168_15.pngMercurial 发表于 2025-3-24 07:54:37
http://reply.papertrans.cn/67/6692/669168/669168_16.pngTOXIC 发表于 2025-3-24 14:10:56
Numerical semigroups with embedding dimension three,s number of a numerical semigroup of embedding dimension three can be given in terms of the generators (and consequently also a formula for the genus in view of Corollary 3.5). This formula is presented by the authors in .卜闻 发表于 2025-3-24 17:33:58
http://reply.papertrans.cn/67/6692/669168/669168_18.png小步舞 发表于 2025-3-24 22:04:13
http://reply.papertrans.cn/67/6692/669168/669168_19.png古文字学 发表于 2025-3-24 23:37:11
Proportionally modular numerical semigroups,roup. In that manuscript it is shown that the genus of these semigroups can be obtained from the coefficients of the inequality. However, to date we still do not know formulas for the Frobenius number or the multiplicity of the semigroup of solutions of a modular Diophantine inequality.