男生戴手铐 发表于 2025-3-23 11:23:46
http://reply.papertrans.cn/67/6690/668965/668965_11.pngreflection 发表于 2025-3-23 16:10:06
Numerical Bifurcation Analysis for Reaction-Diffusion EquationsARCH 发表于 2025-3-23 19:04:06
0179-3632 , an analytical bifurcation analysis is possible only for exceptional cases. This book is devoted to nu merical analysis of bifurcation problems in reaction-diffusion equations. The aim is to pursue a systematic investigation of generic bifurcations a978-3-642-08669-4978-3-662-04177-2Series ISSN 0179-3632 Series E-ISSN 2198-3712anaphylaxis 发表于 2025-3-23 22:13:29
http://reply.papertrans.cn/67/6690/668965/668965_14.pngavarice 发表于 2025-3-24 04:56:19
http://reply.papertrans.cn/67/6690/668965/668965_15.png白杨 发表于 2025-3-24 07:59:47
http://reply.papertrans.cn/67/6690/668965/668965_16.pngFlinch 发表于 2025-3-24 13:03:27
http://reply.papertrans.cn/67/6690/668965/668965_17.png白杨 发表于 2025-3-24 17:28:54
Book 2000e. g. temperature, catalyst and diffusion rate, etc. Moreover, they form normally a nonlinear dissipative system, coupled by reaction among differ ent substances. The number and stability of solutions of a reaction-diffusion system may change abruptly with variation of the control parameters. Corlethargy 发表于 2025-3-24 20:03:43
http://reply.papertrans.cn/67/6690/668965/668965_19.pngATRIA 发表于 2025-3-25 02:08:13
Center Manifold Theory,al system. The center manifold theorem was introduced in the sixties by Pliss and Kelley . Owing to the Lanford’s contribution this theory has been applied extensively to the study of bifurcation problems and dynamical systems, in particular, in connection with the normal form theory.