游牧 发表于 2025-3-21 18:09:31
书目名称Number Theory in Function Fields影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0668882<br><br> <br><br>书目名称Number Theory in Function Fields影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0668882<br><br> <br><br>书目名称Number Theory in Function Fields网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0668882<br><br> <br><br>书目名称Number Theory in Function Fields网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0668882<br><br> <br><br>书目名称Number Theory in Function Fields被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0668882<br><br> <br><br>书目名称Number Theory in Function Fields被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0668882<br><br> <br><br>书目名称Number Theory in Function Fields年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0668882<br><br> <br><br>书目名称Number Theory in Function Fields年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0668882<br><br> <br><br>书目名称Number Theory in Function Fields读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0668882<br><br> <br><br>书目名称Number Theory in Function Fields读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0668882<br><br> <br><br>Feigned 发表于 2025-3-22 00:00:38
http://reply.papertrans.cn/67/6689/668882/668882_2.png渐强 发表于 2025-3-22 01:35:09
http://reply.papertrans.cn/67/6689/668882/668882_3.png不透气 发表于 2025-3-22 06:40:19
,Galois Extensions — Hecke and Artin L-Series,In Chapters 7 and 8 we discussed finite extensions . of algebraic function fields. We propose to continue that discussion here under the special assumption that the extension . is Galois. To simplify the discussion we continue to assume that the constant field . of . is perfect.龙卷风 发表于 2025-3-22 12:38:21
http://reply.papertrans.cn/67/6689/668882/668882_5.png杂色 发表于 2025-3-22 14:39:10
http://reply.papertrans.cn/67/6689/668882/668882_6.png落叶剂 发表于 2025-3-22 19:03:42
Graduate Texts in Mathematicshttp://image.papertrans.cn/n/image/668882.jpgcurettage 发表于 2025-3-22 22:07:33
http://reply.papertrans.cn/67/6689/668882/668882_8.pngLOPE 发表于 2025-3-23 04:09:40
http://reply.papertrans.cn/67/6689/668882/668882_9.png嫌恶 发表于 2025-3-23 09:10:31
Extensions of Function Fields, Riemann-Hurwitz, and the ABC Theorem,be presented in a geometric fashion. Function fields correspond to algebraic curves and finite extensions of function fields correspond to ramified covers of curves. In this chapter, however, we will continue to use a more arithmetic point of view which emphasizes the analogy of function fields with algebraic number fields.