Destruct 发表于 2025-3-21 16:03:57

书目名称Number Theory Related to Fermat’s Last Theorem影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0668869<br><br>        <br><br>书目名称Number Theory Related to Fermat’s Last Theorem影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0668869<br><br>        <br><br>书目名称Number Theory Related to Fermat’s Last Theorem网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0668869<br><br>        <br><br>书目名称Number Theory Related to Fermat’s Last Theorem网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0668869<br><br>        <br><br>书目名称Number Theory Related to Fermat’s Last Theorem被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0668869<br><br>        <br><br>书目名称Number Theory Related to Fermat’s Last Theorem被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0668869<br><br>        <br><br>书目名称Number Theory Related to Fermat’s Last Theorem年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0668869<br><br>        <br><br>书目名称Number Theory Related to Fermat’s Last Theorem年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0668869<br><br>        <br><br>书目名称Number Theory Related to Fermat’s Last Theorem读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0668869<br><br>        <br><br>书目名称Number Theory Related to Fermat’s Last Theorem读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0668869<br><br>        <br><br>

BARB 发表于 2025-3-21 21:28:23

Geometry of Fermat Varieties, automorphisms acts on a Fermat variety. The other is the existence of the so-called “inductive structure” of Fermat varieties of a fixed degree. By combining these, we can deal with various geometric questions concerning Fermat varieties and their products (or varieties closely related to them) suc

miscreant 发表于 2025-3-22 03:09:11

http://reply.papertrans.cn/67/6689/668869/668869_3.png

hereditary 发表于 2025-3-22 05:54:11

The Fermat Equation and Transcendence Theory,een shown, in papers of Stewart and of Inkeri and van der Poorten, that if |x - y| is bounded by some fixed number then the equation x. + y. = z. has only finitely many solutions in positive integers x,y,z,n(> 2) and, in principle, these can all be effectively determined. This would seem to be the f

人类 发表于 2025-3-22 12:19:05

Values of L-Functions of Jacobi-Sum Hecke Characters of Abelian Fields,on is done only up to algebraic numbers, and we assume that the Hecke character is in the “good range.” We may make a more refined Statement (the Γ-hypothesis), which actually predicts the values up to rational numbers, and which has been verified in the totally real case () and in the case of im

ARC 发表于 2025-3-22 15:32:53

On the Conjecture of Birch and Swinnerton-Dyer for Elliptic Curves with Complex Multiplication,in the half-plane Re(s) > 3/2 (2.4). Whenever L(E,s) has an analytic continuation to the entire complex plane, we can consider the first term in its Taylor expansion at s= 1; we write L(E,s) ~ c(E) (s − 1). as s → 1, where r(E) is a nonnegative integer and c(E) is a nonzero real number. Birch and Sw

来这真柔软 发表于 2025-3-22 20:23:14

Mordell-Weil Groups of Elliptic Curves Over Cyclotomic Fields,orem asserts that if F is a finite extension of . then E(F) is finitely generated. Our main result shows that for a large class of elliptic curves over ., and for certain infinite abelian extensions F of ., the group E(F) remains finitely generated. it should be noted that the torsion subgroup of E(

只有 发表于 2025-3-22 22:10:16

,Iwasawa’s Theory and p-ADIC L-Functions for Imaginary Quadratic Fields,is to provide some evidence for a “two-variable main conjecture” that has been suggested at least in special cases by R. Yager in . We will first describe various “main conjectures” that have been proposed over the years in a more general and unified way.

Blasphemy 发表于 2025-3-23 03:18:33

Dorian Goldfeld,Jeffrey Hoffstein,Samuel James Patterson

健谈的人 发表于 2025-3-23 08:48:39

http://reply.papertrans.cn/67/6689/668869/668869_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Number Theory Related to Fermat’s Last Theorem; Proceedings of the c Neal Koblitz Conference proceedings 1982 Springer Science+Business Med