Nonchalant 发表于 2025-3-21 19:11:20

书目名称Normalization Techniques in Deep Learning影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0668075<br><br>        <br><br>书目名称Normalization Techniques in Deep Learning影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0668075<br><br>        <br><br>书目名称Normalization Techniques in Deep Learning网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0668075<br><br>        <br><br>书目名称Normalization Techniques in Deep Learning网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0668075<br><br>        <br><br>书目名称Normalization Techniques in Deep Learning被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0668075<br><br>        <br><br>书目名称Normalization Techniques in Deep Learning被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0668075<br><br>        <br><br>书目名称Normalization Techniques in Deep Learning年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0668075<br><br>        <br><br>书目名称Normalization Techniques in Deep Learning年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0668075<br><br>        <br><br>书目名称Normalization Techniques in Deep Learning读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0668075<br><br>        <br><br>书目名称Normalization Techniques in Deep Learning读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0668075<br><br>        <br><br>

Flirtatious 发表于 2025-3-21 21:36:53

,Motivation and Overview of Normalization in DNNs,een examples will be dominated by these dimensions, which will impair the performance of the learner. Besides, normalizing an input can improve the optimization efficiency for parametric models. There exist theoretical advantages to normalization for linear models, as we will illustrate.

Blatant 发表于 2025-3-22 03:11:20

,A General View of Normalizing Activations,oduce the preliminary work of normalizing activations of DNNs, prior to the milestone normalization technique—batch normalization (BN) [.]. We then illustrate the algorithm of BN and how it is developed by exploiting the merits of the previous methods.

bleach 发表于 2025-3-22 07:07:09

,BN for More Robust Estimation,ng along the batch dimension, as introduced in previous sections. Here, we will discuss the more robust estimation methods that also address this problem of BN. One way to reduce the discrepancy between training and inference is to combine the estimated population statistics for normalization during training.

语言学 发表于 2025-3-22 11:57:51

http://reply.papertrans.cn/67/6681/668075/668075_5.png

ASSAY 发表于 2025-3-22 15:30:38

http://reply.papertrans.cn/67/6681/668075/668075_6.png

过于平凡 发表于 2025-3-22 20:25:14

,Summary and Discussion,le to design new normalization methods tailored to specific tasks (by the choice of NAP) or improve the trade-off between efficiency and performance (by the choice of NOP). We leave the following open problems for discussion.

AVANT 发表于 2025-3-22 21:12:50

http://reply.papertrans.cn/67/6681/668075/668075_8.png

词汇表 发表于 2025-3-23 01:41:08

,Multi-mode and Combinational Normalization, GMM distribution as: . where . represents .-th Gaussian in the mixture model .. It is possible to estimate the mixture coefficient . and further derive the soft-assignment mechanism ., by using the expectation-maximization (EM) [.] algorithm.

轨道 发表于 2025-3-23 07:56:56

http://reply.papertrans.cn/67/6681/668075/668075_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Normalization Techniques in Deep Learning; Lei Huang Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to