eternal 发表于 2025-3-21 17:49:05
书目名称Nonlinear Differential Equation Models影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0667388<br><br> <br><br>书目名称Nonlinear Differential Equation Models影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0667388<br><br> <br><br>书目名称Nonlinear Differential Equation Models网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0667388<br><br> <br><br>书目名称Nonlinear Differential Equation Models网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0667388<br><br> <br><br>书目名称Nonlinear Differential Equation Models被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0667388<br><br> <br><br>书目名称Nonlinear Differential Equation Models被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0667388<br><br> <br><br>书目名称Nonlinear Differential Equation Models年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0667388<br><br> <br><br>书目名称Nonlinear Differential Equation Models年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0667388<br><br> <br><br>书目名称Nonlinear Differential Equation Models读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0667388<br><br> <br><br>书目名称Nonlinear Differential Equation Models读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0667388<br><br> <br><br>Preserve 发表于 2025-3-21 22:30:15
http://reply.papertrans.cn/67/6674/667388/667388_2.png过分自信 发表于 2025-3-22 03:46:33
http://reply.papertrans.cn/67/6674/667388/667388_3.pngjungle 发表于 2025-3-22 05:04:40
http://reply.papertrans.cn/67/6674/667388/667388_4.png有危险 发表于 2025-3-22 09:10:05
Behavior of the Free Boundary Near Contact Points with the Fixed Boundary for Nonlinear Elliptic EqThe aim of this paper is to study a free boundary problem for a uniformly elliptic fully non-linear operator. Under certain assumptions we show that free and fixed boundaries meet tangentially at contact points.反馈 发表于 2025-3-22 15:02:36
Global Solutions of an Obstacle-Problem-Like Equation with Two Phases,Concerning the obstacle-problem-like equation ., where λ.> 0 and λ.> 0, we give a complete characterization of all global two-phase solutions with quadratic growth both at 0 and infinity.财产 发表于 2025-3-22 18:56:47
On the Blow-Up Set For Ut = (um)xx m> 1, with Nonlinear Boundary Conditions,In this paper we give a complete description of the set of blow up points of solutions of the problem . where m> I.Carminative 发表于 2025-3-23 00:17:01
http://reply.papertrans.cn/67/6674/667388/667388_8.pnghemophilia 发表于 2025-3-23 04:27:14
978-3-7091-7208-7Springer-Verlag Wien 2004朦胧 发表于 2025-3-23 08:53:31
,A Phase Plane Analysis of the “Multi-Bubbling” Phenomenon in Some Slightly Supercritical Equations, .⩾3 and an equation involving the exponential nonlinearity in dimension .⩾2. For that purpose, we perform a phase plane analysis which emphasizes the common heuristic properties of the two problems, although more precise estimates can be obtained in some cases by variational methods.